
www.manaraa.com

www.manaraa.com

Communications
in Computer and Information Science 69

www.manaraa.com

Leszek A. Maciaszek César González-Pérez
Stefan Jablonski (Eds.)

Evaluation of
Novel Approaches to
Software Engineering

3rd and 4th International Conferences
ENASE 2008/2009
Funchal, Madeira, Portugal, May 4-7, 2008
Milan, Italy, May 9-10, 2009
Revised Selected Papers

13

www.manaraa.com

Volume Editors

Leszek A. Maciaszek
Macquarie University
Sydney, NSW, Australia
E-mail: leszek@science.mq.edu.au

César González-Pérez
LaPa – CSIC, Spain
E-mail: cesar.gonzalez-perez@iegps.csic.es

Stefan Jablonski
University of Bayreuth, Germany
E-mail: stefan.jablonski@uni-bayreuth.de

Library of Congress Control Number: 2010934784

CR Subject Classification (1998): D.2, F.3, D.3, C.2, H.4, K.6

ISSN 1865-0929
ISBN-10 3-642-14818-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14818-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

www.manaraa.com

Preface

Software engineering is understood as a broad term linking science, traditional engi-
neering, art and management and is additionally conditioned by social and external
factors (conditioned to the point that brilliant engineering solutions based on strong
science, showing artistic creativity and skillfully managed can still fail for reasons
beyond the control of the development team).

Modern software engineering needs a paradigm shift commensurate with a change
of the computing paradigm from:

1. Algorithms to interactions (and from procedural to object-oriented
programming)

2. Systems development to systems integration
3. Products to services

Traditional software engineering struggles to address this paradigm shift to interac-
tions, integration, and services. It offers only incomplete and disconnected methods
for building information systems with fragmentary ability to dynamically accommo-
date change and to grow gracefully. The principal objective of contemporary software
engineering should therefore be to try to redefine the entire discipline and offer a
complete set of methods, tools and techniques to address challenges ahead that will
shape the information systems of the future.

This book is a peer-reviewed collection of papers, modified and extended for the
purpose of this publication, but originally presented at two successive conferences:
ENASE 2008 and ENASE 2009 (ref. http://www.enase.org/). The mission of the
ENASE (Evaluation of Novel Approaches to Software Engineering) conference series
is to be a prime international forum to discuss and publish research findings and IT
industry experiences with relation to the evaluation of novel approaches to software
engineering. By comparing novel approaches with established traditional practices
and by evaluating them against software quality criteria, the ENASE conference se-
ries advances knowledge and research in software engineering, identifies the most
hopeful trends and proposes new directions for consideration by researchers and prac-
titioners involved in large-scale software development and integration.

The high quality of this volume is attested twofold. Firstly, all papers submitted to
ENASE were subject to stringent reviews that resulted in acceptance rates of 25% or
less. Secondly, only selected papers were considered for this volume and only after
considering revisions, modifications and extensions.

The book’s content is placed within the entire framework of software engineering
activities, but with particular emphasis on experience reports and evaluations (qualita-
tive and quantitative) of existing approaches as well as new ideas and proposals
for improvements. The book is dedicated to managing one of the most important
challenges that society is facing – how to ensure that humans can understand, control

www.manaraa.com

 Preface VI

and gracefully evolve complex software systems. A related aim of the book is to
ensure the uptake of the presented research through further knowledge-transfer activi-
ties by researchers, educators, project managers and IT practitioners.

January 2010 Leszek A. Maciaszek
Cesar Gonzalez-Perez

Stefan Jablonski

www.manaraa.com

Organization

Conference Co-chairs

Joaquim Filipe Polytechnic Institute of Setúbal/INSTICC, Portugal
Leszek A. Maciaszek Macquarie University, Sydney, Australia

Program Co-chairs

Cesar Gonzalez-Perez LaPa - CSIC, Spain
Stefan Jablonski University of Bayreuth, Germany

Organizing Committee

Sérgio Brissos INSTICC, Portugal
Paulo Brito INSTICC, Portugal
Marina Carvalho INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
Vera Coelho INSTICC, Portugal
Andreia Costa INSTICC, Portugal
Bruno Encarnação INSTICC, Portugal
Bárbara Lima INSTICC, Portugal
Raquel Martins INSTICC, Portugal
Carla Mota INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Vera Rosário INSTICC, Portugal
José Varela INSTICC, Portugal

ENASE Program Committee

Pekka Abrahamsson, Finland
Witold Abramowicz, Poland
Hernán Astudillo, Chile
Colin Atkinson, Germany
Muhammad Ali Babar, Ireland
Giuseppe Berio, France
Robert Biddle, Canada
Maria Bielikova, Slovak Republic
Mokrane Bouzeghoub, France
Dumitru Burdescu, Romania

Ismael Caballero, Spain
Wojciech Cellary, Poland
Sung-Deok Cha, Korea
Panagiotis Chountas, UK
Lawrence Chung, USA
Alex Delis, Greece
Jens Dietrich, New Zealand
Jim Duggan, Ireland
Margaret Dunham, USA
Schahram Dustdar, Austria

www.manaraa.com

 Organization VIII

Joerg Evermann, Canada
Maria João Ferreira, Portugal
Bogdan Franczyk, Germany
Steven Fraser, USA
Felix Garcia, Spain
Marcela Genero, Spain
Janusz Getta, Australia
Tudor Girba, Switzerland
Cesar Gonzalez-Perez, Spain
Hans-Gerhard Gross, The Netherlands
Jarek Gryz, Canada
Jo Hannay, Norway
Igor Hawryszkiewycz, Australia
Brian Henderson-Sellers, Australia
Zbigniew Huzar, Poland
Stefan Jablonski, Germany
Slinger Jansen, The Netherlands
Stan Jarzabek, Singapore
Wan Kadir, Malaysia
Philippe Kruchten, Canada
Michele Lanza, Switzerland
Xabier Larrucea, Spain
Kecheng Liu, UK
Leszek Maciaszek, Australia
Cristiano Maciel, Brazil
Lech Madeyski, Poland
Radu Marinescu, Romania
Claudia Bauzer Medeiros, Brazil
Leon Moonen, Norway
Johannes Müller, Germany
Sascha Mueller, Germany
Anne Hee Hiong Ngu, USA
Selmin Nurcan, France
James Odell, UK
Antoni Olive, Spain
Maria Orlowska, Poland
Janis Osis, Latvia
Mieczyslaw Owoc, Poland
Marcin Paprzycki, Poland

Jeffrey Parsons, Canada
Mario Piattini, Spain
Klaus Pohl, Germany
Naveen Prakash, India
Lutz Prechelt, Germany
Awais Rashid, UK
Gil Regev, Switzerland
Félix García Rubio, Spain
Francisco Ruiz, Spain
Chris Sacha, Poland
Krzysztof Sacha, Poland
Motoshi Saeki, Japan
Stephen R. Schach, USA
Heiko Schuldt, Switzerland
Manuel Serrano, Spain
Jan Seruga, Australia
Tony Sloane, Australia
Il-Yeol Song, USA
Dan Tamir, USA
Stephanie Teufel, Switzerland
Dave Thomas, Canada
Rainer Unland, Germany
Jean Vanderdonckt, Belgium
Christelle Vangenot, Switzerland
Athanasios Vasilakos, Greece
Olegas Vasilecas, Lithuania
Jari Veijalainen, Finland
Juan D. Velasquez, Chile
Maria Esther Vidal, Venezuela
Maurizio Vincini, Italy
Igor Wojnicki, Poland
Viacheslav Wolfengagen, Russian

Federation
Martin Wolpers, Belgium
Huahui Wu, USA
Lu Yan, UK
Sung-Ming Yen, Taiwan
Janette Young, UK
Weihua Zhuang, Canada

www.manaraa.com

Table of Contents

Part I: Evaluation of Novel Approaches to Software
Engineering 2008

Measuring Characteristics of Models and Model Transformations Using
Ontology and Graph Rewriting Techniques . 3

Motoshi Saeki and Haruhiko Kaiya

On-the-Fly Testing by Using an Executable TTCN-3 Markov Chain
Usage Model . 17

Winfried Dulz

Language-Critical Development of Process-Centric Application
Systems . 31

Tayyeb Amin, Tobias Grollius, and Erich Ortner

Balancing Business Perspectives in Requirements Analysis 47
Alberto Siena, Alessio Bonetti, and Paolo Giorgini

Using Fault Screeners for Software Error Detection 60
Rui Abreu, Alberto González, Peter Zoeteweij, and
Arjan J.C. van Gemund

Language Support for Service Interactions in Service-Oriented
Architecture . 75

Sven De Labey, Jeroen Boydens, and Eric Steegmans

Part II: Evaluation of Novel Approaches to Software
Engineering 2009

Automating Component Selection and Building Flexible Composites
for Service-Based Applications . 93

Jacky Estublier, Idrissa A. Dieng, and Eric Simon

An Aspect-Oriented Framework for Event Capture and Usability
Evaluation . 107

Slava Shekh and Sue Tyerman

Implementing Domain Specific Process Modelling . 120
Bernhard Volz and Sebastian Dornstauder

www.manaraa.com

X Table of Contents

Bin-Packing-Based Planning of Agile Releases . 133
Ákos Szőke

A Method to Measure Productivity Trends during Software
Evolution . 147

Hans Christian Benestad, Bente Anda, and Erik Arisholm

Design Pattern Detection in Java Systems: A Dynamic Analysis Based
Approach . 163

Francesca Arcelli, Fabrizio Perin, Claudia Raibulet, and
Stefano Ravani

Formalization of the UML Class Diagrams . 180
Janis Osis and Uldis Donins

Extended KAOS Method to Model Variability in Requirements 193
Farida Semmak, Christophe Gnaho, and Régine Laleau

Orthographic Software Modeling: A Practical Approach to View-Based
Development . 206

Colin Atkinson, Dietmar Stoll, and Philipp Bostan

Dynamic Management of the Organizational Knowledge Using
Case-Based Reasoning . 220

Viviane Santos, Mariela Cortés, and Márcia Brasil

Mapping Software Acquisition Practices from ISO 12207 and CMMI 234
Francisco J. Pino, Maria Teresa Baldassarre, Mario Piattini,
Giuseppe Visaggio, and Danilo Caivano

Concept Management: Identification and Storage of Concepts in the
Focus of Formal Z Specifications . 248

Daniela Pohl and Andreas Bollin

A Model Driven Approach to Upgrade Package-Based Software
Systems . 262

Antonio Cicchetti, Davide Di Ruscio, Patrizio Pelliccione,
Alfonso Pierantonio, and Stefano Zacchiroli

Coupling Metrics for Aspect-Oriented Programming: A Systematic
Review of Maintainability Studies . 277

Rachel Burrows, Alessandro Garcia, and François Täıani

www.manaraa.com

Table of Contents XI

Revealing Commonalities Concerning Maintenance of Software Product
Line Platform Components . 291

Martin Assmann, Gregor Engels, Thomas von der Massen, and
Andreas Wübbeke

Service Based Development of a Cross Domain Reference
Architecture . 305

Liliana Dobrica and Eila Ovaska

Author Index . 319

www.manaraa.com

Part I
Evaluation of Novel Approaches

to Software Engineering 2008

www.manaraa.com

Measuring Characteristics of Models and Model
Transformations Using Ontology and Graph

Rewriting Techniques

Motoshi Saeki1 and Haruhiko Kaiya2

1 Tokyo Institute of Technology, Tokyo 152-8552, Japan
saeki@se.cs.titech.ac.jp

2 Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
kaiya@cs.shinshu-u.ac.jp

Abstract. In this paper, we propose the integrated technique related to metrics
in a Model Driven Development context. More concretely, we focus on the fol-
lowing three topics; 1) the application of a meta modeling technique to specify
formally model-specific metrics, 2) the definition of metrics dealing with seman-
tic aspects of models (semantic metrics) using domain ontologies, and 3) the
specification technique for the metrics of model transformations based on graph
rewriting systems.

Keywords: model metrics, model transformation, ontology, graph rewriting,
model driven development (MDD).

1 Introduction

The techniques of metrics are to quantify characteristics of software products and devel-
opment processes, e.g. quality, complexity, stability, development efforts, etc., and are
significant to predict these characteristics at earlier steps of the development processes,
as well as to know the current status of the products and the processes.

Model Driven Development (MDD) is one of the promising approaches to develop
software of high quality with less developers’ efforts. There are wide varieties of mod-
els such as object-oriented models, data flow models, activity models etc. that can be
produced in the MDD processes. For example, object oriented modeling mainly adopts
class diagrams consisting of classes and their associations, while in data flow modeling
data flow diagrams having processes (data transformation), data flows and data stores,
etc. are used. In this situation, according to models, we should use different metrics to
quantify their characteristics, and it is necessary to define the metrics according to the
models. For example, in the object-oriented models, we can use the CK metrics [5] to
quantify the structural complexity of a produced class diagram, while we use another
metrics such as Cyclomatic number [15] for an activity diagram of UML (Unified Mod-
eling Language). These examples show that effective metrics vary on a model, and first
of all, we need a technique to define model-specific metrics in MDD context.

The existing metrics such as CK metrics and Cyclomatic number are for expressing
the structural, i.e. syntactical characteristics of artifacts only, but do not reflect their se-
mantic aspects. Suppose that we have two class diagrams of Lift Control System, which

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 3–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.manaraa.com

4 M. Saeki and H. Kaiya

are the same except for the existence of class “Emergency Button”; one includes it, while
the other does not. It can be considered that the diagram having “Emergency Button” is
structurally more complex rather than the other, because the number of the classes in it
is larger. However, it has higher quality in the semantics of Lift Control System because
Emergency Button is mandatory for the safety of passengers in a practical Lift Control
Systems. This example shows that the metrics expressing semantic aspects is necessary
to measure the quality of artifacts more correctly and precisely. In particular, these se-
mantic aspects are from the properties specific to problem and application domains.

In MDD, model transformation is one of the key technologies [17,12,16] for devel-
opment processes, and the techniques of quantifying the characteristics of model trans-
formations and their processes are necessary. Although we have several metrics for
quantifying traditional and conventional software development processes such as staff-
hours, function points, defect density during software testing etc., they are not sufficient
to apply to model transformation processes of MDD. In other words, we need the met-
rics specific to model transformations in addition to model-specific metrics. Suppose
that a metric value can express the structural complexity of a model, like CK metrics,
a change or a difference between the metric values before and after a model transfor-
mation can be considered as the improvement or declination of model complexity. For
example, the model transformation where the resulting model becomes more complex
is not better and has lower quality from the viewpoint of model complexity. This ex-
ample suggests that we can define a metric of a model transformation with a degree of
changing the values of model-specific metrics by its application. Following this idea,
the formal definition of a transformation should include the definition of model-specific
metrics so that the metrics can be calculated during the transformation.

In this paper, we propose a technique to solve the above three problems; 1) specifying
metrics according to modeling methods, 2) semantic metrics, and 3) formal definition
of model transformation with metrics. More concretely, we take the following three
approaches;

1. Using a meta modeling technique to specify model-specific metrics
Since a meta model defines the logical structure of models, we can specify the def-
inition of metrics, including its calculation technique, as a part of the meta model.
Thus we can define model-specific metrics formally. We use Class Diagram plus
predicate logic to represent meta models with metrics definitions.

2. Using a domain ontology
We use a domain ontology to provide for the model the semantics specific to a
problem and application domain. As mentioned in [14], we consider an ontology
as a thesaurus of words and inference rules on it, where the words in the thesaurus
represent concepts and the inference rules operate on the relationships on the words.
Each concept of an ontology can be considered as a semantically atomic element
that anyone can have the unique meaning in the domain. The inference rules can
automate the detection of inconsistent parts and of the lacks of mandatory model
elements [10]. Thus we can calculate semantic metrics such as the degree on how
many inconsistent parts are included in the model, considering the mapping from
a model to a domain ontology. Intuitively speaking, the semantic metrics value is
based on the degree of how faithfully the model reflects the structure of the domain

www.manaraa.com

Measuring Characteristics of Models and Model Transformations 5

ontology. In other words, we consider a domain ontology as an ideal and ultimate
model in the domain, and we calculate semantic characteristics of a model by its
deviation from the domain ontology.

3. Using a graph rewriting system to measure model transformations
Since we adopt Class Diagram to represent a meta model, a model following the
meta model is mathematically considered as a graph. Model transformation rules
can be defined as graph rewriting rules and the rewriting system can execute the
transformation automatically in some cases. The metric values to be calculated are
attached to graph rewriting rules, and can be evaluated and propagated between the
models during the transformation. This evaluation and propagation mechanism is
similar to Attribute Grammar, and the evaluation and propagation methods can be
defined within the graph rewriting rules. We define the metrics of a model transfor-
mation using the model-specific metric values of the models, which are attached to
the rules.

The usages of the meta modeling technique for defining model-specific metrics [20]
and of graph rewriting for formalizing model transformations [6,19] are not new. In
fact, OMG is currently developing a meta model that can specify software metrics [18]
and the workshop [4] to evaluate practical usability of model transformation techniques
including graph rewriting systems was held. However, but the contribution of this paper
is the integrated application technique of meta modeling and graph rewriting to solve
the new problems mentioned above, with unified framework.

The rest of the paper is organized as follows. In the next section, we introduce our
meta modeling technique so as to define model-specific metrics. Section 3 presents the
usage of domain ontologies to provide semantic metrics and the way to embed them into
the meta models. In section 4, we define model transformation with graph rewriting and
illustrate the metrics being calculated on the transformation. Section 5 is a concluding
remark and discusses the future research agenda.

2 Meta Modeling and Defining Metrics

A meta model specifies the structure or data type of the models and in this sense, it
can be considered as an abstract syntax of the models. In addition to meta models, we
should consider constraints on the models. Suppose that we define the meta model of
the models which are described with class diagrams, i.e. object-oriented models. In any
class diagram, we cannot have different classes having the same name, and we should
specify this constraint to keep consistency of the models on their meta model.

In our technique, we adopt a class diagram of UML for specifying meta models and
predicate logic for constraints on models. The example of the meta model of the simpli-
fied version of class diagrams is shown in Figure 1 (a). As shown in the figure, it has the
concepts “Class”, “Operation” and “Attribute” and all of them are defined as classes and
these concepts have associations representing logical relationships among them. For in-
stance, the concept “Class” has “Attribute”, so the association “has Attribute” between
“Class” and “Attribute” denotes this relationship.

Metrics is defined as a class having the attribute “value” in the meta model as shown
in the Figure 1 (b). The “value” has the metrics value and its calculation is defined

www.manaraa.com

6 M. Saeki and H. Kaiya

(a) Meta Model of Class Diagram
(b) Meta Model of

Structural Complexity Metrics

Fig. 1. Meta Model with Metrics Definitions

as a constraint written with a predicate logic formula. For example, WMC (Weighted
Method per Class) of CK metrics is associated with each class of a class diagram. In-
tuitively speaking, the value of WMC is the number of the methods in a class when we
let all weighted factors be 1. It can be defined as follows;

WMC value =
#{m : ClassDiagram Operation |

∃c : ClassDiagram Class · (has WMC(c, self) ∧ has Operation(c, m))} (1)

where predicates has WMC(x, y) and has Operation(u, v) express that the class x
has y of the class WMC and that the class u has the operation v. These predicates are
from the associations on the meta model of Class Diagram as shown in Figure 1 (a).
ClassDiagram Operation refers to the class Operation included in the meta model Class-
Diagram and denotes a set of instances of the Operation. # P denotes the cardinality of
the set P, and self represents an instance of the class WMC in a context of this formula,
i.e. the instance holding the WMC value in the formula. WMC and the other CK metrics
are not for a class diagram but for a class. For simplicity, we omit cardinality informa-
tion from Figure 1 (a), and the cardinality of has WMC is one-to-one. Thus we use the
maximum number of WMC values in the class diagram or the average value to represent
the WMC for the class diagram. In this example, which is used throughout the paper,
we take the sum total of WMCs for the class diagram, and the attribute TNMvalue of
StructuralComplexity holds it as shown in Figure 1 (b). We can define it as follows;

StructuralComplexity TNMvalue =
∑

x:WMC x.value (2)

3 Using Domain Ontologies

Ontology technologies are frequently applied to many problem domains nowadays
[9,23]. As mentioned in section 1, an ontology plays a role of a semantic domain.

www.manaraa.com

Measuring Characteristics of Models and Model Transformations 7

require

Model

Domain Ontology (thesaurus part only)

semantic mapping

aaa

bbb

?

Fig. 2. Mapping from a Model to an Ontology

Basically, our ontology is represented in a directed typed graph where a node and an arc
represent a concept and a relationship (precisely, an instance of a relationship) between
two concepts, respectively.

Let’s consider how a model engineer uses a domain ontology to measure the semantic
characteristics of his or her models. During developing the model, the engineer should
map its model element into atomic concepts of the ontology as shown in Figure 2. In
the figure, the engineer develops a data flow diagram, while the domain ontology is
written in the form of class diagrams. For example, the element “aaa” in the data flow
diagram is mapped into the concepts A, B and the relationship between them. Formally,
the engineer specifies a semantic mapping where semantic mapping(aaa) = {A, B, a
relationship between A and B}. In the figure, although the model includes the concept
A, it does not have the concept C, which is required by A on the domain ontology.
Thus we can conclude that this model is incomplete because a necessary element, i.e.
the concept C is lacking, and we can have the metrics of completeness (COMPL) by
calculating the ratio of the lacking elements to the model elements, i.e.

COMPL value =
1 − #Lacking elements/(#ModelElement + #Lacking elements) (3)

where
Lacking elements =
{u : Thesaurus | ∃c1 : ModelElement ∃e : Thesaurus·

(semantic mapping(c1, e) ∧ require(e, u)∧
¬∃c2 : ModelElement · semantic mapping(c2, u)}

The meta model combined with this semantic metrics definition can be illustrated in
Figure 3 in the same way as the syntactical metrics of Figure 1. The right part of the
figure is the meta model of the thesaurus part of domain ontologies, i.e. logical struc-
ture of domain specific thesauruses. A thesaurus consists of concepts and relationships
among the concepts, and it has a variety of subclasses of the “concept” class and “re-
lationship”. In the figure, “object” is a subclass of a concept class and a relationship

www.manaraa.com

8 M. Saeki and H. Kaiya

Concept

quality

function

object

environment

constraint

actor

platform

Relationship

generalize

aggregate

synonym

antonym

require

contradict

cause

apply

perform

2 1
{ordered}

Ontological
element

�����

��	
��
����	
������

�����

������

���������
�	���

Semantic
mapping

Metrics Meta Model Ontology Meta Model

���������	�

���	 �
��� ���	�� �� �

�������������	�
���

�������
���

Meta Model of Class Diagram

Fig. 3. Combining an Ontology Meta Model to a Meta Model

“apply” can connect two concepts. Concepts and relationships in Figure 3 are intro-
duced so as to easily represent the semantics in models of the information systems to be
developed. Intuitively speaking, the concepts “object”, “function”, “environment” and
their subclasses are used to represent functional aspects of the models. On the other
hand, the concepts “constraint” and “quality” are used to represent non-functional as-
pects. Semantic mapping plays a role of the bridges between the models written in
class diagram and a domain thesaurus, and the model engineer provides the semantic
mapping during his or her development of the model. In the figure, as the examples of
semantic metrics, there are four metrics completeness (COMPL), consistency (CON-
SIS), correctness (CORREC) and unambiguity (UNAMB), which resulted from [2].
Their values are calculated from the model, the thesaurus and the semantic mapping,
and the attribute “value” of the metrics holds the calculation result. Similar to Figure 1
and the formula (1), the calculation formulas are defined as constraints and the example
of COMPL value (the attribute “value” in COMPL) was shown in the formula (3).

Figure 4 shows a part of an ontology of Lift Control Systems, and we use class
diagram notation to represent the ontology. Stereo types attached to class boxes and
associations show their types. For example, “Open” belongs to a “function” concept of
Figure 3. An association between “Open” and “Door” is an “apply” relationship, which
presents that an object “Door” participates in the function “Open”. In this example, we
have 11 model elements in the class diagram of Lift Control System and 2 elements
(Close and Stop) to be required are lacking there. Because, in the thesaurus, the func-
tions Open and Move requires Close and Stop respectively. As a result, we can get the
completeness metrics (COMPL) 1 − (2/(11 + 2)) = 0.85. As for the other seman-
tic metrics such as consistency, correctness and unambiguity, their calculation methods
were discussed in [10].

www.manaraa.com

Measuring Characteristics of Models and Model Transformations 9

Model (Class Diagram)
Domain Ontology (Thesaurus) in

Lift Control Systems

semantic mapping

�����

���	
��
�
��

���

���	
��
�
��

�������

����
���	
��
�
��

�������

����
����������

���	
���	

����
���	
��
�
��

�������

�������

�
��
����������

���	
 ���	

������
����	���

����������

����

�����	

���
����

�����������

������
�	

����

��������

���	

����	
��������	

���������������

�����	

Fig. 4. An Example of a Lift Control System

Fig. 5. Domain Specific Metrics

The calculation formula of this example is general because we calculate the ratio
on how many required concepts are really included in the model. On the other hand,
we sometimes need to define the metrics whose calculation formulas have the domain-
specific properties, and these metrics can be defined as sub classes of the general metrics
class. In the example of Lift Control System domain, we can consider that the quality
of the model having no emergency buttons is low from the viewpoint of completeness.
As shown in Figure 5, we set the sub class DS-COMPL of COMPL and specify a new
calculation formula for the domain-specific completeness value as follows.

DSCOMPL value = super.value×
(1 + ∃c : ModelElement · semantic mapping(c,EmergencyButton))/2 (4)

It uses the completeness value of the super class COMPL (super.value). If no emer-
gency buttons are included, the completeness value is super.value × (1 + 0)/2, i.e. a
half of the previous definition shown in the formula (3).

www.manaraa.com

10 M. Saeki and H. Kaiya

4 Metrics of Model Transformation

4.1 Graph Rewriting System

In Model Driven Development, one of the technically essential points is model transfor-
mation. Since we use a class diagram to represent a meta model, a model, i.e. an instance
of the meta model can be considered as a graph, whose nodes have types and attributes,
and whose edges have types, so called attributed typed graph. Thus in this paper, model
transformation is defined as a graph rewriting system, and graph rewriting rules domi-
nate allowable transformations. A graph rewriting system converts a graph into another
graph or a set of graphs following pre-defined rewriting rules. There are several graph
rewriting systems such as PROGRESS [21] and AGG [22]. Since we should deal with
the attribute values attached to nodes in a graph, we adopt the definition of the AGG
system in this paper.

A graph consists of nodes and edges, and type names can be associated with them.
Nodes can have attribute values depending on their type. The upper part of Figure 6 is
a simple example of rewriting rules. A rule consists of a left-hand and a right-hand side
which are separated with “::=”. The attribute values should be able to be propagated in
any direction, i.e. from the left-hand side of “::=” to the right-hand side, the opposite
direction, as well as within the same side, and this mechanism is similar to synthesized
and inherited attributes of Attribute Grammar. In this sense, the graph rewriting system
that we use is an extended version of AGG.

In figure 6, a rectangle box stands for a node of a graph and it is separated into two
parts with a horizontal bar. The type name of a node appears in the upper part of the
horizontal bar, while the lower part contains its attribute values. In the figure, the node
of “TypeA” in the left-hand graph has the attribute “val” and its value is represented
with the variable “x”. A graph labeled with NAC (Negative Application Condition)
appearing in the left-hand controls the application of the rule. If a graph includes the
NAC graph, the rule cannot be applied to it. In addition, we add the conditions that are
to be satisfied when the rule is applied. In this example, we have two conditions, one
of which says that “val” of the node “1:TypeA” has to be greater than 4 to apply this
rewriting rule.

The lower part of Figure 6 illustrates graph rewriting. The part encircled with a dotted
rectangular box in the left-hand is replaced with the sub graph that is derived from the
right-hand of the rule. The attribute values 5 and 2 are assigned to x and y respectively,
and those of the two instance nodes of “TypeD” result in 7 (x+y) and 3 (x-y). The
attribute “val” of “TypeD” node looks like an inherited attribute of Attribute Grammar
because its value is calculated from the attribute values of the left-hand side of the rule,
while “sval” of “TypeC” can be considered as a synthesized attribute. The value of
“sval” of the node “TypeC” in the left-hand side is calculated from the values in the
right-hand side, and we get 8 (3:TypeD val + x = 3+5). Note that the value of “val”
of “TypeA” is 5, greater than 4, the value of “sval” is less than 10, and none of nodes
typed with “TypeD” appear, so the rule is applicable. The other parts of the left-hand
side graph are not changed in this rewriting process.

www.manaraa.com

Measuring Characteristics of Models and Model Transformations 11

TypeA
val =5

TypeB
val = 2

TypeC

a b

b

TypeA
val =5

TypeB
val = 2

TypeC

a b

b
TypeA TypeB

TypeD TypeD

val=5 val=2

val=7 val=3
a a

c

TypeE TypeA
c a

TypeE TypeA
c

1:TypeA
val =x

2:TypeB
val = y

TypeC

a b

b

1:TypeA 2:TypeB

TypeD 3:TypeD

val=x val=y

val=x+y val=x-y

a a

c

:: =
TypeD

NAC

Rewriting Rule

Rewriting

1:TypeA_val > 4
TypeC_sval < 10

sval = 3:TypeD_val + x

sval = 8

Fig. 6. Graph Rewriting Rules and Rewriting Process

4.2 Attaching Calculation Rules

The model following its meta model is represented with an attributed typed graph and it
can be transformed by applying the rewriting rules. We call this graph instance graph in
the sense that the graph is an instance of the meta model. Figure 7 shows the example
of a class diagram of Lift Control System and its instance graph following the meta
model of Figure 1. The types of nodes result from the elements of the meta model such
as Class, Attribute and Operation, while the names of classes, attributes and operations
are specified as the values of the attribute “name”. In the figure, the class Lift in the
class diagram corresponds to the node typed with Class and whose attribute “name” is
Lift. Some nodes in the instance graph have metric values as their attribute values. For
example, a node typed with WMC has the attribute “value” and its value is the number
of the operations of the class, which is calculated using the formula (1). The WMC
value of class Lift is 3 as shown in the figure.

We can design graph rewriting rules considering the nodes of the metrics and their
values. See an example of a transformation rule shown in Figure 8. Two conditions
x2 > a and x3 < y3 are attached to the rule for rewriting the graph G1 with G2 and
these conditions should be satisfied before the rule is applied. This transformation rule
includes two nodes named “metrics for G1” and “metrics for G2”, each of which holds
the metric values of the model. The first condition x2 > a expresses that the rule cannot
be applied until the value of the metric m2 before the rewriting is greater than a certain
value, i.e. “a”. It means that this model transformation is possible when the model has
a metric value higher than a certain standard. The second condition x3 < y3 specifies
monotonic increasing of the metric m3 in this transformation. This formula has both
metric values before and after the transformation as parameters and it can specify the
characteristics of the transformation, e.g. a specific metric value is increasing by the
transformation. As shown in the figure, the calculation of the metric n2 uses the metric
m1 of the model before the transformation, and this calculation formula of n2 shows that

www.manaraa.com

12 M. Saeki and H. Kaiya

:WMC
value = 1

:WMC
value = 1

:WMC
value = 1

:WMC
value = 1

:Class
name=Scheduler

:Class
name=EmergencyButton

:Operation
name=push

:Operation
name=arrived

:Class
name=Door

:Operation
name=request

:Operation
name=down

:Operation
name=up

:Attribute
name=position

:Class
name=Lift

:StructuralComplexity
:ClassDiagram:ClassDiagram

:Operation
name=open

:WMC
value = 3

:WMC
value = 3

:WMC
value = 1

:WMC
value = 1

(a) Class Diagram (b) Instance Graph with Metrics Nodes

TNMvalue = 6

����

�����	

���
����

�����������

������
�	

����

��������

���	

����	
��������	

���������������

�����	

:Attribute
name=lift_status

Metrics NodesMetrics Nodes

Fig. 7. Class Diagram and Its Instance Graph

G1 G2

metrics for G1 metrics for G2

m1=x1
m2=x2
m3=x3
...

m3=y3
n1=y1
n2=f(x1)
...

x2 > a
x3 < y3

a metric of the transformation: g(x1,x2,x3,..., y1,f(x1),y3,...)

Fig. 8. Metrics and Model Transformation

the metric value of G1 is propagated to G2. The metrics of a transformation process can
be formally specified by using this approach. In Figure 8, we can calculate how much
a metric value could be improved with the transformation by using the metric values of
the model before the transformation and those after the transformation. The function g
in the figure calculates the improvement degree of the metric value. This is a basic idea
of the metrics of model transformations.

Let’s consider the example of a model transformation using graph rewriting rules.
The model of Lift Control System in Figure 7 (a) can be considered as a platform inde-
pendent model (PIM) because of no consideration of implementation situation, and we
illustrate its transformation into a platform dependent model (PSM). We have a sched-
uler to decide which lift should be made to come to the passengers by the information
of the current status of the lifts (the position and the moving direction of the lift), but
we don’t explicitly specify the concrete technique to implement the function of getting

www.manaraa.com

Measuring Characteristics of Models and Model Transformations 13

the status information from the lifts. If the platform that we will use has an interrupt-
handling mechanism to detect the arrival of a lift at a floor, we put a new operation
“notify” to catch the interruption signal in the Lift module. The notify operation calls
the operation “arrived” of Scheduler and the “arrived” updates the lift status attribute
according to the data carried by the interrupt signal. As a result, we can get a PSM that
can operate under the platform having interrupt-handling functions. In Figure 9, Rule
#1 is for this transformation and PSM#1 is the result of applying this rule to the PIM of
Lift Control System.

Another alternative is for the platform without any interrupt-handling mechanism,
and in this platform, we use multiple instances of a polling routine to get the current lift
status from each lift. The class Thread is an implementation of the polling routine and
its instances are concurrently executed so as to monitor the status of their assigned lifts.
To execute a thread object, we add the operations “start” for starting the execution of the
thread and “run” for defining the body of the thread. The operation “attach” in Scheduler
is for combining a scheduler object to the thread objects. Rule #2 and PSM#2 in Figure
9 specifies this transformation and its result respectively. The TNMvalue, the total sum
of the operations, can be calculated following the definition of Figure 1 for PIM, PSM#1
and PSM#2. It can be considered that the TNM value expresses the efforts to implement
the PSM because it reflects the volume of the source codes to be implemented. Thus the
difference of the TNMvalues (ΔTNMvalue) between the PIM to the PSM represents
the increase of implementation efforts. In this example, PSM#1 is easier to implement
because ΔTNMvalue of PSM#1 is smaller than that of PSM#2, as shown in Figure
9. So we can conclude that the transformation Rule #1 is better rather than Rule #2,
only from the viewpoint of less implementation efforts. This example suggests that
our framework can specify formally the metrics of model transformations by using the
metric values before and after the transformations.

5 Conclusion and Future Work

In this paper, we propose three techniques to define metrics in MDD context; 1) the
application of a meta modeling technique to specify model-specific metrics, 2) the def-
inition of metrics dealing with semantic aspects of models (semantic metrics) using
domain ontologies and 3) the specification technique for metrics of model transforma-
tions based on graph rewriting systems.

In addition, the future research agenda can be listed up as follows.

1) Metrics on graph rewriting. The metrics mentioned in the previous section was
based on model-specific metrics and value changes during model transformations. We
can consider another type of metrics based on characteristics of graph rewriting rules.
For example, the fewer graph rewriting rules that implement the model transformation
may lead the more understandable transformation, and the complexity of the rules can
be used as the measure of understandability of the transformation. This kind of com-
plexity such as the number of rules and the number of nodes and edges included in the
rules can be calculated directly from the rules. Another example is related to the pro-
cess of executing graph rewriting. During a transformation process, we can calculate
the number of the application of rules to get a final model, and this measure can express

www.manaraa.com

14 M. Saeki and H. Kaiya

:StructuralComplexity

:ClassDiagram:ClassDiagram

TNMvalue = m

:Class
name=x
:Class
name=x

:Class
name=y
:Class
name=y

:Class
name=Thread
:Class
name=Thread

:Operation
name=notify
:Operation
name=notify

:Operation
name=attach
:Operation
name=attach

:Operation
name=start
:Operation
name=start

:Operation
name=run
:Operation
name=run

:Class
name=x
:Class
name=x

:Class
name=y
:Class
name=y

:Class
name=x
:Class
name=x

:Class
name=y
:Class
name=y

:Class
name=x
:Class
name=x

:Class
name=y
:Class
name=y

monitors

:StructuralComplexity

:ClassDiagram:ClassDiagram

TNMvalue = n

:StructuralComplexity

:ClassDiagram:ClassDiagram

TNMvalue = n
:StructuralComplexity

:ClassDiagram:ClassDiagram

TNMvalue = m

��������	

�
��
������

�		
�����

�
��

���
����

��������	

�
��
������

�		
�����

��������

�
��

��	���

���	���
	����

��������

�
��

��������	

�
��
������

�		
�����

::=

::=

Rule#1

Rule#2

Transformation from a PIM to a PSM

�TNMvalue = n-m = 1

�TNMvalue = n-m = 3
PIM

PSM#1

PSM#2

Rule#1

Rule#2

Fig. 9. Model Transformation Example

efficiency of the model transformation. The smaller the number is the more efficient.
This type of metrics is apparently different from the above metrics on the complexity of
rules, in the sense that it is the metrics related to the actual execution processes of trans-
formation. We call the former type of the metrics static metrics and the latter dynamic
metrics. As mentioned above, our approach has potentials for defining wide varieties of
model transformation metrics.

2) Development of supporting tools. We consider the extension of the existing AGG
system, but to support the calculation of the metrics of transformations and the selection
of suitable transformations, we need more powerful evaluation mechanisms of attribute
values. The mechanisms for version control of models and re-doing transformations are
also necessary to make the tool practical.

3) Usage of standards. For simplicity, we used class diagrams to represent meta mod-
els and predicate logic to define metrics. To increase the portability of meta models
and metrics definitions, we will adapt our technique to standard techniques that OMG

www.manaraa.com

Measuring Characteristics of Models and Model Transformations 15

proposed or is proposing, i.e. MOF, XMI, OCL (Object Constraint Language), QVT
and Software Metrics Metamodel [18]. The technique of using OCL on a meta model
to specify metrics was also discussed in [3,20], and the various metrics for UML class
diagrams can be found in [8].

4) Collecting useful definitions of metrics. In this paper, we illustrated very simple
metrics for explanation of our approach. Although the aim of this research project is
not to find and collect useful and effective metrics as many as possible, making a kind
of catalogue of metric definitions and specifications like [7,13] is important in the next
step of the supporting tool. The assessment of the collected metrics is also a research
agenda.

5) Constructing domain ontologies. The quality of a domain ontology greatly depends
on the preciseness of the semantic metrics, and we should get a domain ontology for
each problem and application domain. In fact, developing various kind of domain on-
tologies of high quality by hand is a time-consuming and difficult task. Adopting text
mining approaches are one of the promising ones to support the development of domain
ontologies [1,11].

References

1. KAON Tool Suite, http://kaon.semanticweb.org/
2. IEEE Recommended Practice for Software Requirements Specifications. Technical report,

IEEE Std. 830-1998 (1998)
3. Abreu, F.B.: Using OCL to Formalize Object Oriented Metrics Definitions. In: Tutorial in 5th

International ECOOP Workshop on Quantitative Approaches in Object-Oriented Software
Engineering, QAOOSE 2001 (2001)

4. Bézivin, J., Rumpe, B., Schur, A., Tratt, L.: Model Transformations in Practice Workshop.
In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 120–127. Springer, Heidelberg
(2006)

5. Chidamber, S., Kemerer, C.: A Metrics Suite for Object-Oriented Design. IEEE Trans. on
Software Engineering 20(6), 476–492 (1994)

6. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches. In:
OOPSLA 2003 Workshop on Generative Techniques in the context of Model Driven Ar-
chitecture (2003)

7. Ebert, C., Dumke, R., Bundschuh, M., Schmietendorf, A.: Best Practices in Software Mea-
surement. Springer, Heidelberg (2005)

8. Genero, M., Piattini, M., Calero, C.: A Survey of Metrics for UML Class Diagrams. Journal
of Object Technology 4(9), 59–92 (2005)

9. Gruninger, M., Lee, J.: Ontology: Applications and Design. Commun. ACM 45(2) (2002)
10. Kaiya, H., Saeki, M.: Ontology Based Requirements Analysis: Lightweight Semantic Pro-

cessing Approach. In: Proc. of QSIC, pp. 223–230 (2005)
11. Kitamura, M., Hasegawa, R., Kaiya, H., Saeki, M.: An Integrated Tool for Supporting Ontol-

ogy Driven Requirements Elicitation. In: Proc. of 2nd International Conference on Software
and Data Technologies (ICSOFT 2007), pp. 73–80 (2007)

12. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. Addison-Wesley, Reading (2003)
13. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics. Prentice-Hall, Englewood Cliffs

(1994)

www.manaraa.com

16 M. Saeki and H. Kaiya

14. Maedche, A.: Ontology Learning for the Semantic Web. Kluwer Academic Publishers,
Dordrecht (2002)

15. McCabe, T., Butler, C.: Design Complexity Measurement and Testing. CACM 32(12), 1415–
1425 (1989)

16. Mellor, S., Balcer, M.: Executable UML. Addison-Wesley, Reading (2003)
17. OMG. MDA Guide Version 1.0.1. (2003), http://www.omg.org/mda/
18. OMG. ADM Software Metrics Metamodel RFP (2006),

http://www.omg.org/docs/admtf/06-09-03.doc
19. Saeki, M.: Role of Model Transformation in Method Engineering. In: Pidduck, A.B.,

Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 626–642.
Springer, Heidelberg (2002)

20. Saeki, M.: Embedding Metrics into Information Systems Development Methods: An Ap-
plication of Method Engineering Technique. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003.
LNCS, vol. 2681, pp. 374–389. Springer, Heidelberg (2003)

21. Schurr, A.: Developing Graphical (Software Engineering) Tools with PROGRES. In: Proc.
of 19th International Conference on Software Engineering (ICSE 1997), pp. 618–619 (1997)

22. Taentzer, G., Runge, O., Melamed, B., Rudorf, M., Schultzke, T., Gruner, S.: AGG: The
Attributed Graph Grammar System (2001), http://tfs.cs.tu-berlin.de/agg/

23. Wand, Y.: Ontology as a Foundation for Meta-Modelling and Method Engineering. Informa-
tion and Software Technology 38(4), 281–288 (1996)

www.manaraa.com

On-the-Fly Testing by Using an Executable TTCN-3
Markov Chain Usage Model

Winfried Dulz

Department of Computer Science, University of Erlangen-Nuremberg
Martensstr. 3, D-91058 Erlangen, Germany

dulz@cs.fau.de
http://www7.informatik.uni-erlangen.de/ d̃ulz/

Abstract. The TestUS framework offers a range of techniques to obtain a TTCN-
3 test suite starting from UML 2.0 requirement definitions. Use case diagrams
that contain functional and non-functional requirements are first transformed to
a Markov Chain usage model (MCUM). Probability annotations of MCUM state
transitions enable the generation of TTCN-3 test cases that reflect the expected
usage patterns of system users. Because compiling the associated TTCN-3 test
suite can take quite a long time for a realistic SUT (System under Test) we de-
cided to map the MCUM directly into the executable test suite without generating
test cases in advance. Test cases and the evaluation of test verdicts are interpreted
on-the-fly during executing the test suite. We proved the concept by testing an
existing DECT communication system. The compilation time for deriving an ex-
ecutable TTCN-3 test suite was reduced to only 15 minutes and one can interpret
as many test cases as one likes on-the-fly.

Keywords: Statistical testing, Automatic test suite generation, Markov Chain
usage model, UML 2.0, TTCN-3.

1 Introduction

Model-based development techniques are getting more and more attractive in order to
master the inherent complexity of real-world applications. Different models are used
for all kind of purposes during the system development cycle and handle static and
dynamic aspects of the future system. The latest UML standard [10] will strongly influ-
ence more and more areas of software engineering, covering application domains that
are also vulnerable for non-functional QoS (quality of service) errors, e.g. real-time or
performance errors.

Model-based testing in general is a widespread research topic since many years, [4]
give a good review concerning current activities. Examples covering automation tools
are contained in [13]. There exist papers on usage models [12] and [14], which mainly
focus on model generation and evaluation based on textual descriptions of the usage
behavior. In [1] statistical test case generation based on a MCUM that is derived from
UML sequence diagram scenarios is discussed. [1] and [2] also explain how to integrate
QoS and performance issues in the test process.

In the next section, we will first discuss testing techniques in general that have influ-
enced our method, i.e. black- box testing with TTCN-3 and the statistical usage testing

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 17–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www7.informatik.uni-erlangen.de/~dulz/

www.manaraa.com

18 W. Dulz

technique. In section 3, our model-based test case generation approach is described in
detail. Next, we present the main results of a case study for testing DECT modules and
finally we summarize with a conclusion and some final remarks.

2 Testing Concepts

2.1 TTCN-3

TTCN-3 is the most recent version of the well established test notation language TTCN,
standardized by ETSI ([5]). It is a universal language for test management and test
specification, valid for any application domain, such as protocol, service or module
testing. TTCN-3 is suitable for different kinds of testing approaches, e.g. conformance,
robustness, interoperability, regression, system or acceptance tests.

Modules are the top-level elements
for structuring elements and consist of
an optional import section, an optional
definition part and the control part. The
main functionality of the test suite is
defined within the test case definition
statements, where specific responses of
the SUT are related to TTCN-3 test ver-
dicts. Inside the control part section the
sequential order of the execute state-
ments and the function calls represents
the precise test runs of an executable
test suite. An example for the definition
of a TTCN-3 test suite is given on the
left hand side.

After compiling the TTCN-3 modules an executable or interpretable test suite is pro-
vided by the TE (TTCN-3 Executable) element in Fig. 1. Further entities have to be
supplied, which are necessary to make the abstract concepts concrete and executable.
By means of the TCI (TTCN-3 Control Interface) the test execution can be influenced
with respect to test management and test logging (TM). Test component handling for
distributed testing (CH) and encoder/decoder functions for different representations of
TTCN-3 data types (CD) may also be provided. The TRI (TTCN-3 Runtime Interface)
was defined to enable the interactions between the SUT and the test system via a stan-
dardized interface.

In Fig. 1 two parts of the TRI are visible: the description of the communication
system is specified in the SA (SUT Adapter) and the PA (Platform Adapter) implements
timers and external functions based on the underlying operating system.

2.2 Statistical Usage Testing

MBT (Model-based Testing) techniques make use of formal descriptions (models) of
either the SUT (System under Test) or the expected usage of the users of the SUT. In the
former case a behavioral specification is derived from the requirement definitions and

www.manaraa.com

On-the-Fly Testing by Using an Executable TTCN-3 Markov Chain Usage Model 19

Fig. 1. Building blocks of a TTCN-3 test system

serves as a starting basis to automatically generate test cases in order to test the SUT
[11]. In the latter case usage models are deduced from the requirements and may be con-
sidered as independent of the specification. Because exhaustive testing of real systems
is infeasible in practice an appropriate set of test cases is derived for accomplishing a
given test goal. At this point Markovian statistics come into play.

Statistical testing relies on MCUMs [14] that characterize the estimated distribution
of possible uses of a given software in its intended environment. A Markov chain con-
sists of states and transitions between states [16]. This directed graph structure describes
all possible usage scenarios for a given SUT derived by randomly traversing the arcs
between dedicated start and end states. Transitions are augmented by probabilities from
a usage profile that reflects usage choices users will have when they interact with the
SUT.

Providing more than one usage profile for a given Markov chain structure is also pos-
sible. Hereby, the statistical selection of test cases reflects distinct properties of different
roles or user classes, e.g. experts or normal users, in interaction with the SUT.

How to build and to integrate the MCUM approach into a UML based development
process is explained in the next section.

3 Model-Based Testing

3.1 The TestUS Framework

The test case generation process, as shown in Fig. 2, starts with a UML use case diagram
at the top of the diagram. Ovals inside the use cases characterize the usage behavior that
is refined by scenario descriptions in form of sequence diagrams. In combination with a
usage profile the MCUM is automatically derived by the procedure explained in section
3.3. This model is the base for the automatic generating of the TTCN-3 test suite, as

www.manaraa.com

20 W. Dulz

Fig. 2. TestUS framework for a model-based TTCN-3 test suite generation starting from use case
scenarios

explained in more details in section 4. After adding additional data types and template
definitions for the TTCN-3 test suite compilation, an executable test suite is generated.
The evaluation of test verdicts during the test enables the calculation of test results, e.g.
coverage of states and transitions and the reliability metric at the end.

3.2 Scenario-Based Requirements

A development process starts with the requirements phase. The task is to identify pos-
sible use cases and to illustrate the sequence of desired operations in some way. This
is covered in the UML by static use case diagrams and by dynamic diagrams such as
activity, state chart and interaction diagrams.

Most common are requirement descriptions in form of sequence diagrams. In addi-
tion to the characterization by means of simple message interactions, state invariants
are included to distinguish certain special situations during a user interaction with the
system.

For instance after receiving a Connection Setup Confirm message the user
knows that he has a valid connection to the system, which may be reflected in a con-
nected state invariant, as shown in Fig. 3. To denote QoS (quality of service) require-
ments special annotations may be attached to sequence diagrams that are conform to
the UML SPT Profile (schedulability, performance and time).

www.manaraa.com

On-the-Fly Testing by Using an Executable TTCN-3 Markov Chain Usage Model 21

Fig. 3. User provided state invariant

Fig. 4. Trigger message and the system
response represented by a sequence diagram

Fig. 5. Trigger message and the system
response represented by a MCUM

3.3 Deriving the MCUM Test Model

Providing a set of scenario descriptions as output from the requirement definitions the
test model, i.e. the MCUM can be automatically generated. UML protocol state ma-
chines are adequate for representing this kind of model. Each sequence diagram con-
tains one lifeline for the SUT; each additional lifeline corresponds to a possible user of
the system.

Combined fragments in the sequence diagrams are used to specify special situations
during the user interactions and state information can be added to define state invariants
in the diagrams. The following diagrams ([7] will illustrate the main transformation
rules to obtain the protocol state machine from a given set of sequence diagrams:

* In a first step supplementary state invariants are added. Apart from user provided
state invariants, additional state information is needed to have at most two messages
in invariants, additional state information is needed to have at most two messages in
between any two states, i.e. a sending message m1 and its corresponding receiving
message m2 reflecting the system response as shown in Fig. 4. We denote by ?m1,
respectively by !m2 the trigger message, respectively the system response in the
corresponding transition ’s1 ?m1!m2 s2’ of the generated MCUM as shown in Fig. 5.

* In any other case, each single message, i.e. a trigger message without a direct sys-
tem response or a spontaneous system response without a previous trigger message,
should be enclosed by two states. Whereas sequence diagrams represent a partial
order semantic by default, the exchange of messages is now strictly ordered.

* If M(s) is a MCUM for the sequence s = s11 · · · s1n, M(t) is a MCUM for the
sequence t = s21 · · · s2m and s1n = s21, we generate for the concatenation expres-
sion ’s t’ as shown in Fig. 6.

www.manaraa.com

22 W. Dulz

Fig. 6. MCUM resulting from concatenating two message sequences

Fig. 7. Sequence diagram containing an alt fragment

For all combined fragments, a composite state is generated and a new state machine is
added to the MCUM for the included sequence. In more detail the following transfor-
mations are considered:

* For the conditional fragment (Fig. 7) that represents two alternative user interac-
tions with the system we generate the corresponding MCUM composite state in
Fig. 8. In addition, three new supplementary state invariants are automatically gen-
erated inside the composite state in order to separate trigger messages and the sys-
tem’s response.

* In general, if M(s) is a MCUM derived from the sequence s = s11 · · · s1n and M(t)
is a MCUM derived from the sequence t = s21 · · · s2m we will generate a MCUM
composite state for the conditional fragment as shown in Fig. 9.

This transformation enables the generation of test cases that either contain trig-
ger messages and corresponding system responses from s or from t. If we add tran-
sition probabilities from the usage profile to the outgoing transitions of state s0

it is possible to test alternative user behavior that also reflects the expected usage
statistics and not only the correct order of possible user interactions with the SUT.

* For the loop fragment that iterates over the sub chain M(s) containing the sequence
s = s11 · · · s1n we generate the composite state represented in Fig. 10.

In this situation, we can generate test cases that contain the sequence s arbitrarily
often (including also the Zero case). In general, we are also able to create a MCUM

www.manaraa.com

On-the-Fly Testing by Using an Executable TTCN-3 Markov Chain Usage Model 23

Fig. 8. TMCUM composite state for an alt fragment

Fig. 9. MCUM composite state resulting from an alt fragment concatenating two message
sequences

composite state from loop fragments that contain upper and lower boundaries to
express finite loop conditions.

* If M(s) is a MCUM derived from the sequence s = s11 · · · s1n and M(t) is a MCUM
derived from the sequence t = s21 · · · s2m we generate the MCUM composite state
shown in Fig. 11 for the parallel fragment s par t.

Here, events of M(s) and M(t) may be arbitrarily interleaved. The main condi-
tion is that the test case has to reflect the correct order of events inside the parallel
executable sequences s and t.

* Beside the presented combined fragments alt, loop and par we have also con-
sidered opt for options, neg for invalid behavior, assert for assertions, break
for break conditions,strict for strict sequencing,critical for critical sections
and included the necessary MCUM transformation rules in the TestUS framework.

* After having generated the structure of the MCUM it is necessary to attach usage
profile probability information to the MCUM transitions in order to model a test
characteristic that is as close as possible to the future usage behavior of the SUT.

www.manaraa.com

24 W. Dulz

Fig. 10. MCUM composite state resulting from a loop fragment concatenating a message
sequence

Fig. 11. MCUM composite state resulting from a par fragment concatenating two message
sequences

In [15], [9] and [6] proper strategies to derive valid probabilities for the usage pro-
files are discussed.

* In the last step of the transformation process all final states of the generated MCUM
segments are merged to one final state. In addition, a new initial state is included
and connected to the initial states of otherwise isolated MCUM segments. Finally,
equally named user provided state invariants are combined and corresponding in-
coming (outgoing) transitions are united. The result is an automatic generated
MCUM as starting point for generating the TTCN-3 test suite.

* As an example, the MCUM for testing the DECT system in the case study of section
5 resulted from about 230 usage scenarios and consists of about 900 states with over
3400 transitions.

4 Test Suite Generation

4.1 Arguments for Avoiding the Explicit Generation of Test Cases

A test case is any valid path in the MCUM consisting of single test steps that starts
from the initial state and reaches the final state resulting either in a PASS or a FAIL
test verdict.

www.manaraa.com

On-the-Fly Testing by Using an Executable TTCN-3 Markov Chain Usage Model 25

In the previous approach discussed in [2], abstract test cases were generated from
the derived MCUM in an intermediate step. To achieve this objective the XMI repre-
sentation of the UML protocol state machine for the MCUM was processed by means
of XSLT (Extensible Stylesheet Language Transformation) technology. We have chosen
TTCN-3 from ETSI ([5]) because we determined a good tool support by a broad appli-
cability and standardized interfaces both to the SUT as well as to the test management
part. The transformation of abstract UML test cases to concrete TTCN-3 test cases is
done automatically. The only manual part was to add missing data definitions and to
provide an interface implementation for handling the communication with the SUT.

The main disadvantage of the previous approach is the need to generate test cases
first in order to derive an executable test suite, as shown in fig. 12. The duration for
generating and transforming a test case from a given MCUM is in the order of six
minutes related to realistic applications. At the first glance this generation overhead
seems not to be very serious.

On closer examination and especially looking at the big variance between one up to
24 hours for compiling an executable test suite for the DECT system we identified two
major reasons for the inefficient TTCN-3 compilation:

– unfolding finite loop fragments with upper and/or lower boundaries for not violating
the Markovian assumptions of the MCUM theory

– serialization of interleaved events inside composite states that are generate from
parallel fragments will lead to a factorial growth of the length of test cases.

We also checked the intermediate code of the Telelogic Tau G2 TTCN-3 compiler used
in our project with respect to the TTCN-3 interleave construct and noticed that the com-
piler maps it to a sequence of alt (choice) statements.

Fig. 12. Duration of the transformation and compilation steps to generate a TTCN-3 test suite for
a DECT system

www.manaraa.com

26 W. Dulz

In addition, another drawback arises from the static definition of the test behavior
after having compiled the executable TTCN-3 test suite. After finishing the test and
estimating the quality of the SUT additional tests may be performed to further improve
the reliability estimation. This is due to the fact that the accuracy of the confidence
interval for the reliability depends on the number of executed test cases. In this situation
new test cases have to be generated and another compilation phase has to be performed.
The duration for this task may be in the order of hours, depending on the size of the
randomly generated test cases and the resulting TTCN-3 test suite definition.

To avoid these disadvantages and to be more flexible concerning the test execution
we decided to cancel the test case generation step and immediately mapped the MCUM
protocol state machine into the TTCN-3 ([7]).

4.2 The Executable Markov Chain Usage Model Is the Test Suite

An executable TTCN-3 test suite consists of a set of concurrent test components, which
perform the test run. There exists always one MTC (Master Test Component), created
implicitly when a test suite starts. PTCs (Parallel Test Components) are generated dy-
namically on demand. In the TestUS framework the generated test configuration con-
sists of the following parts:

* Every actor in the sequence diagrams is represented by one PTC that executes the
specific behavior. PTCs are generated and started by the MTC at the beginning of
an interpreted test case.

* Synchronization is a major task of the MTC. Synchronization messages are inserted
in each of the following situations:

• at the beginning of a test case right after the creation of a PTCs, a sync mes-
sage is sent from every PTC to the MTC, signaling to be ready for start

• after gathering these messages, the test component that is responsible for doing
the next test step is sent a sync ack message by the MTC

• syncall messages are used to inform the MTC that a PTC has received a
response from the SUT which is piggy-back encoded inside a sync message.

* Eventually, the MTC is responsible for logging every test step’s verdict, i.e. the
positive or negative result of a test step by using the piggy-back information from
the PTCs.

Let us explain the main concept in a small example that illustrates the TTCN-3 inter-
pretation of the simple MCUM in Fig. 13.

As discussed in the previous subsection no explicit test case generation is needed.
Instead, each transition of the MCUM is considered to be a single test step. Parameters

Fig. 13. Simple MCUM to demonstrate the communication between a PTC and the MTC in a
TTCN-3 test executable

www.manaraa.com

On-the-Fly Testing by Using an Executable TTCN-3 Markov Chain Usage Model 27

of the transition, i.e. trigger message, expected result and the associated probability are
automatically mapped into a behavior defining function that allows the interpretation of
the test step on-the-fly during the test execution.

The function name is directly derived from the names of the source and target states.
The TTCN-3 keyword runs on is used to denote which PTC has to executed the
function. Alternative reactions of the SUT are defined in the alt statement right after
the pair of brackets []. The resulting sync message that is sent from the PTC to the MTC
either contains the expected result or a fail information. Function state1to2 below
represents the MCUM transition in Fig. 13 from the PTC’s point of view that has to
handle the User1 interactions with the SUT.

Below, the TTCN-3 control actions for the MTC to interpret the simple test case
of the MCUM are shown. After the module definition part that contains the definition
of function state1to2 abstracted by ”′ · · · ”′ the first control action starts the PTC
of User1. If the expected result is received from the PTC the MTC logs this event
and the verdict pass is given. Otherwise the test results in the verdict fail and the
errorState is reached.

If there exists more than one possibility to leave a given state of the MCUM the MTC
has to choose randomly the next transition based on the probability information of the
leaving transitions that has to sum up to 1 for each state.

After logging the test verdict the MTC will select the next test case on-the-fly by
continuing with the start state of the MCUM. At the end of the test typical statistics are
calculated and presented to the test user, e.g. number of test cases, number of visited
states and transitions, mean length of a test case and the reliability of the SUT.

5 A DECT Case Study

To validate the TestUS approach we have chosen the case study from Biegel ([3]) in
order to compare the results. In [3], the main test goal was to demonstrate the correct
intercommunication behavior of DECT protocol modules via the DHCI (DECT Host
Controller Interface).

The configuration of the SUT is shown in Fig. 14. The DECT system consists of
two base stations (FP: fixed part) and four portable parts (PP: portable part) that may
be subscribed either to the first or the second FP. During the test the PPs are allowed

www.manaraa.com

28 W. Dulz

to change the FP in order to emulate roaming mobile users while talking in a voice
conference.

Use case and interaction diagrams that express the requirement definitions of the
DECT system contain about 230 sequence diagrams. XSLT style sheets are used to
transform these diagrams to a UML protocol state machine consisting of around 900
states and over 3400 transitions that represents the MCUM as an executable test model.

The usage behavior was specified by TTCN-3 test cases and functions which are
executed on the components. In addition templates for sending and receiving messages
had to be defined. By matching template names to the signatures of the DECT messages
that are used in the scenarios this mapping was done automatically during the test.

In our previous approach ([2]), the duration for generating and transforming a test
case from the generated MCUM as show in Fig. 12 is in the order of six minutes related
to the DECT case study. The TTCN-3 test suite consisted of over 200 test cases, which
means that about 20 hours are needed to derive the TTCN-3 source code. After addi-
tional 24 hours to compile the executable test suite by means of Telelogic Tau G2 the
actual test could be started and revealed around ten failures of different types, e.g. the
reception of a wrong message type, wrong parameter values and even a non-functional
violation of a given time constraint.

In the TestUS approach no overhead for generating, transforming and translating test
cases in order to produce the TTCN-3 test suite is necessary. Instead, the transforma-
tion of the MCUM to the TTCN-3 source code for the DECT case study can be done
within 5 seconds using a Java tool that was developed to do this task and which can be
selected via an Eclipse plug-in. The compilation of the executable test suite is done by
Telelogic Tau G2 within additional 15 minutes. Now, as long as one likes test cases can

www.manaraa.com

On-the-Fly Testing by Using an Executable TTCN-3 Markov Chain Usage Model 29

Fig. 14. TTCN-3 test suite for testing the DECT system

be performed and interpreted on-the-fly in real-time without any further modifications
of the TTCN-3 test suite.

6 Conclusions and Ongoing Work

The advantage of the new approach implemented in the TestUS framework is obvious:

* The main effort at the beginning of the test process is to construct a MCUM in order
to reflect the correct usage behavior between the SUT and all possible actors.

* Based on a UML 2.0 software engineering process, which starts from use case dia-
grams that contain interaction diagrams to refine the user interactions an automatic
derivation of the MCUM protocol state machine representation is achieved by a
proper tool chain.

* There is no need to calculate TTCN-3 test cases in advance. Therefore, it is possible
to avoid the unfolding of finite loop fragments with upper and/or lower boundaries
and the serialization of interleaved events that are responsible for a factorial growth
of the length of the test cases.

* Once the MCUM is transformed to a TTCN-3 test suite, test cases and the evaluation
of test verdicts are interpreted on-the-fly in the executable test suite.

We proved the new concept by means of a realistic case study for testing a DECT
communication system. The previous generation and compilation time for the dedicated
DECT test suite summing up in the order of 44 hours was reduced to only 15 minutes
and we got a TTCN-3 test suite at the end that interprets as many test cases as one likes
for the DECT system on-the-fly and in real-time.

Recently we have also shown that statistical testing based on MCUMs is a promis-
ing extension to existing deterministic testing approaches in the medical and automo-
tive domain. In particular, a polyhedron method for calculating probability distributions

www.manaraa.com

30 W. Dulz

from given constraints has been developed and compared to the maximum entropy
approach [8].

From the usage models, a multitude of metrics can be obtained analytically to im-
prove test planning or to support management decisions. A number of possible scenar-
ios for using these metrics in order to compare customer classes by means of different
MCUM usage profiles have also been identified and discussed ([8]).

All in all, model-based test case generation using MCUMs and dedicated profile
classes enable many new and promising techniques for testing complex systems.

References

1. Beyer, M., Dulz, W.: Scenario-Based Statistical Testing of Quality of Service Require-
ments. In: Leue, S., Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools. LNCS,
vol. 3466, pp. 152–173. Springer, Heidelberg (2005)

2. Beyer, M., Dulz, W., Hielscher, K.-S.J.: Performance Issues in Statistical Testing. In:
Proceedings MMB 2006, Nuremberg, Germany (2006)

3. Biegel, M.: StatisticalTesting of DECT Modules. In: Proceedings ITG Workshop on Model-
Based Testing, Nuremberg, Germany (2006)

4. Broy, M., Jonsson, B., Katoen, J.-P. (eds.): Model-Based Testing of Reactive Systems. LNCS,
vol. 3472, pp. 607–609. Springer, Heidelberg (2005)

5. ETSI: TTCN-3 Core Language. ES 201 873-1 V3.1.1 (2005)
6. Gutjahr, W.J.: Importance Sampling of Test Cases in Markovian Software Usage Models,

Department of Statistics, Operations Research and Computer Science, University of Vienna
(1997)

7. Haberditzl, T.: On-the-fly Interpretation von UML 2.0 Anwendungsszenarien in einer au-
tomatisch generierten TTCN-3 Testsuite. Masterthesis, Department of Computer Science,
University of Erlangen-Nuremberg, Germany (2007)

8. Holpp, S.: Proving the Practicality of the Scenario-based Statistical Testing Approach within
the Scope of the System Validation of a RIS/PACS System. Masterthesis, Department of
Computer Science, University of Erlangen-Nuremberg, Germany (2008)

9. Musa, J.D.: Operational Profiles in Software-Reliability Engineering. IEEE Software (1993)
10. OMG: Unified Modeling Language - Superstructure. Version 2.1.1 (2007)
11. Rosaria, S., Robinson, H.: Applying models in your testing process. Information and Soft-

ware Technology 42, 815–824 (2000)
12. Sayre, K.: Improved Techniques for Software Testing Based on Markov Chain Usage Mod-

els. PhD thesis, University of Tennessee, Knoxville (1999)
13. Tretmans, J., Brinksma, E.: Automated Model Based Testing. University of Twente (2002)
14. Walton, G.H., Poore, J.H., Trammell, C.J.: Statistical Ttesting of Software Based on a Usage

Model. Software - Practice and Experience 25(1), 97–108 (1995)
15. Walton, G.H., Poore, J.H.: Generating transition probabilities to support model-based soft-

ware testing. Software - Practice and Experience 30, 1095–1106 (2000)
16. Whittaker, J.A., Thomason, M.G.: A Markov Chain Model for Statistical Software Testing.

IEEE Transactions on Software Engineering 20(10), 812–824 (1994)

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 31–46, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Language-Critical Development of Process-Centric
Application Systems

Tayyeb Amin, Tobias Grollius, and Erich Ortner

Development of Application Systems, Technische Universität Darmstadt
Hochschulstr.1, 65239 Darmstadt, Germany

{amin,grollius,ortner}@winf.tu-darmstadt.de

Abstract. The shortage of skilled IT-staff as well as the technological possibili-
ties offered by Service-oriented Architectures (SOA) and Web 2.0 applications,
leads us to the following consequences: working processes, job engineering and
labor organization are going to be modeled and therefore made digital in the
sense of IT-support. This goes along with modeling working processes being
independent from the individual employee in areas to be rationalized resp. not
to be staffed by qualified specialists. Hence, there will be a worldwide net based
selection of those who are able and skilled to fulfill modeled work like e.g.
“handling a damage event” or “creating an optimized data structure for master
data” by means of the Unified Modeling Language (UML) in the most effective
and efficient way. An enterprise will therefore neutrally manage its modeled
work processes (HB-services) and IT-services (application programs) taking
place as computer supported work equipment in any working process being lo-
cated anywhere in the world without assigning it first to a specific performer
(neutral or artificial actors). By doing so it is possible to control and dynami-
cally execute working processes globally based on the division of labor, and on
a database supported administration of “bills of activities” (work plans) by
means of the World Wide Web. All that requires new and dynamic – in the
sense of component based – job descriptions and other work equipment exceed-
ing today’s established skill and task management by far.

1 Introduction

According to Aristotle (384-322 BC), Architectonics refers to the art and science of
building, while the term architecture denotes the structure. In civil engineering, the
proportion of “art” within the structuring activity is usually drawn upon to distinguish
an architect (emphasis on art) from an engineer (emphasis on methodology).

For vendors and users of information technology, the term service-oriented archi-
tecture (SOA) has now been an issue for about many years. Organization-centric
Requirements Engineering (on a constructivistic basis) with reference to Applied
Computer Science was proposed for the first time in 1980 [1]. The following observa-
tions are important to this concept today:

• Organizational Processes, which, to some extent, offer a free choice (e.g. specific
knowledge gained from experience) to the acting persons in particular steps of an oc-
currence, are principally to be distinguished from the inherently different algorithmic

www.manaraa.com

32 T. Amin, T. Grollius, and E. Ortner

computer processes (software and hardware). Therefore, organizational processes
ought to be specified further by language-critical organization theory [2].

• Ubiquitous (= found everywhere) computer technology leads to the fact that pres-
ently almost any object (thing or occurrence) can be a medium in this technology.

• Common languages, (e.g. “ontologies”, conceptual schema, ortho-languages)
whether spoken by people or used in technology, always serve as a means for inte-
gration. This includes, to some extent, the integration of heterogeneous elements in
a system or architecture.

• Today, the object-language/meta-language difference in application systems – the
showpiece of system informatics – is firmly established within the overall architec-
ture by means of repositories. For example, repositories are used to enable and fa-
cilitate the management of component-based solutions.

• In the field of constructive languages and consequently in research methods of
various application fields, there has been considerable progress in the past few
years ascribed to the Unified Modeling Language (UML), whose development is
still ongoing.

• There are predominantly three factors, which have initiated the necessity to start
organizing work globally. These are: The fact that Enterprise Organization Theory
is a part of Applied Computer Science, the comprehensive concept of application
systems as service-oriented architectures, and the development of new technolo-
gies on the internet (Web 2.0), for example interactive applications [3]. It is essen-
tial to approach this organizational task from the position of dynamically organized
enterprise networks that interact globally.

In the following, we will describe how the ProCEM® method (Process-Centric Enter-
prise Modeling & Management) meets the above-mentioned requirements, taking into
consideration the human needs. The basis for our description is the experience gained
from accompanying the project “Best Process Architecture”, a contribution to the
BITKOM college competition 2007, the seminar “SOA in Accountancy” held in the
summer term of the same year, and the lecture organization-centric “Development of
Application Systems”, which is an ongoing lecture at TU Darmstadt as of 1996.

The progression of software engineering to enterprise engineering in the last thirty
years as well as the reversionary methodological development of a complete applica-
tion system can be conceived as a basis for ProCEM®.

2 Application Systems Architecture in the 21st Century

Modern application system architectures have been evolved from the conventional
layer architecture of an IT system (IT infrastructure, data, application software) to a
comprehensive architecture of a whole organization – the application system. Now it
has its span over the organizational structure e.g. human resources, the business proc-
esses that are partly automated as workflows, the application services (IT services)
and the data inventory and IT infrastructure as a basis. The business processes resp.
the workflows constitute the core of the process centric application system, executed
and supported by employees as “human services” or IT services.

www.manaraa.com

 Language-Critical Development of Process-Centric Application Systems 33

Process-centric and Service-oriented Architecture of an Enterprise

SCM ERP CRM

Databases Platforms
Data Inventory/

IT-Infrastructure

Application Software/
Services

Workflows/
Processes

Collaborator/
Structural

Organization

IT
-S

er
vi

ce
-

M
an

ag
em

en
t

Information
Technology (IT)

ITSM

Business
Processes

BPM

B
us

in
es

s-
Pr

oc
es

s-
M

an
ag

em
en

t

Fig. 1. 4-tier architecture of an enterprise (application system)

From the information technology point of view on an application system, the field
of IT service management is concerned with business process orientation, whereas
business process management deals with the business process integration with IT ap-
plications from the business perspective.

3 Process-Centric Development of Application Systems

While process-centric application systems development can be equated with a shift
from the “world of being” (entity schema) into the “world of doing” (occurrence
schema), it can also be described as the change from static organization to dynamic
organization of an application system.

In the center of the development are the (organizational, e.g. business) processes,
which are reconstructed and composed of process schema parts. A process is defined
as a directed sequence of occurrences. If a process has been schematized, then this
process is available like any other appliance.

Following the process-centric application systems development style we involve and
integrate different services concerned with organization structure (human resources) and
IT applications to support, execute, or even automate the processes. As shown in figure 2,
the development process is organized in three iterative sub processes:

• Process Centric Cycle: the main development cycle is responsible for the opti-
mized workflow management. As the starting point the (work-) processes of the
organization are reconstructed using different types of process modeling tech-
niques e.g. BPMN. Simultaneously these work processes can be improved by op-
timizing and simulating based on the process models. Having optimized processes,
internal or even external services are determined that execute the processes. At this
point the two more cycles of the development process are involved: either work
plans to be fulfilled by human resources (employees) or IT services can be selected

www.manaraa.com

34 T. Amin, T. Grollius, and E. Ortner

as executing units. Finally, the elected but possibly heterogeneous services must be
orchestrated to the application system.

• Human Centric Cycle: which is responsible of the dynamic nature of the organiza-
tion structure with respect to human resources and offers the best use of these re-
sources with minimum cost expenditures. In this cycle we select detailed work
plans, which are schematized and therefore disposable like a product, for the single
process activities or sub processes and determine the appropriate employee, who is
able to execute the work plan.

• IT Centric Cycle: this is responsible of providing dynamically IT services that
support or execute activitities or sub processes of the reconstructed process. IT
services, or more precisely IT service schemas, are application software that im-
plements work procedures [4]. They are commonly developed on the basis of soft-
ware components and specified as algorithms.

ASSISTING
INFORMATION
TECHNOLOGY

: process-centric : IT-centric

Rekonstruktion
der (Arbeits-)Prozesse

(BPMN, Use Cases)

Process improvement
(Simulation, Optimization, etc.)

Service determination
(e.g. internal or external

services)

Services as a product
(Service Provider)providing

selecting

providing

selecting

Work plans as a product
(Human Resource Management)

: Human-centric

OPTIMIZED
WORKFLOW
MANAGEMENT

DYNAMICAL
STRUCTURAL-
ORGANIZATION

Legend:

Service orchestration:
Operations and simulation

(processes, work plans,
IT-Services)

(Work-) Process reconstruction
(BPMN, Use Cases)

Fig. 2. Iteration paths of orchestration: processes – (information) technology – man

Rather than having oboes, violins or triangles at ones disposal, the orchestration of
application systems make use of human beings, organizational structures and technol-
ogy. Whereby anyone who specifies e.g. organizational processes in the same way as
computer processes and does not distinguish between human-related symbol process-
ing and computer-based symbol processing [5], is not suitable for the development of
organization-centric application systems. Such a person lacks the interdisciplinary
knowledge taught by some of the forward-looking chairs of Applied Computing and
Application Systems at universities worldwide today.

4 Interdisciplinary Language-Critical Specification of IT-Use

Which skills and what kind of knowledge do developers, i.e. “business architects,”
“application developers,” “solution architects,” and so on, need for organization-centric
application development in order to successfully participate in projects of this kind or even
execute such a project on their own? In his book “Der Flug der Eule” (The flight of the
owl), Mittelstraß gives us an answer that is as clearly defined as it is simple [6]:

www.manaraa.com

 Language-Critical Development of Process-Centric Application Systems 35

“Anyone […] who has not studied interdisciplinary
cannot perform interdisciplinary research.”

The acquisition of interdisciplinary schemas and the understanding of them is a pre-
requisite for interdisciplinarity. Anyone who has only studied how to apply something
will not be able to develop organization-centric application systems. The following is
a simple example that illustrates the profound understanding of the development
process. The example reconstructs a data schema in Applied Computer Science.

Schematize the following sentence in object-language,

a) “Smith is a customer who is willing to pay.”

by means of computer sciences, specifically the meta-language “relational model”:

b) “Relation Name (key attribute(s); non-key attributes)”

in an interdisciplinary way, i.e. by different disciplines simultaneously. In order to ac-
complish this, a developer must not solely understand the sentence in object-language
a) with respect to its business-driven generalization (schematization, norm), but addi-
tionally, the user must have agreed on the norm derived from it. In our example, this
would mean that a society (language community) tolerates the following object-
language norm:

 a’) “If we identify a person as a customer, we are allowed to characterize the cus-
tomer more closely by the attribute ‘payment behavior’.”

Furthermore, it is necessary to realize or understand that the “relational model” is
merely a different grammar (meta-schema) for representing the standardized (schema-
tized) object-language “content”. It is our goal to maintain customer data efficiently
on the computer. Through modeling, we achieve the significant result of our interdis-
ciplinary schematization:

b’) “Customer (name; payment behavior)”.

Interdisciplinary schematization (modeling) is one of the core tasks in Applied Com-
puter Science such as Business Informatics. For the acquisition of interdisciplinary
knowledge, e.g. in university courses of study, there is even a so-called “methodical
order” that is to start from the organization to come down to the layer of information
technology. (see figure 1). We can formulate it as follows, whereby the figures in
brackets indicate the “sequence”, i.e., the methodical order. Today specified processes
are means for ends.

Computer Science: form (4) follows function (3)

Business Informatics: applications (3) follow processes (2)

Business and Social Sciences: means (2) follow ends (1)
Constructive
Approach

Axiomatic
Approach

Theoretically, the methodical order, or course can be avoided. However, in prac-
tice, it is recommended to adhere to it. It is most advisable to “put on the socks before
putting on the shoes”, although, at least in theory, it may be possible to consider the
reversed order. The problem in some of the programs of study in Computing Sciences

www.manaraa.com

36 T. Amin, T. Grollius, and E. Ortner

is that interdisciplinary knowledge is not taught – even at the recently appointed Ger-
man superior universities, an apparent lack in IT-architects has lead to the fact that
students in bachelor programs of study merely concern themselves with pure com-
puter sciences, i.e. (3) and (4). For those students who have not entered a practical
profession by then, the Masters program of study will “ensure that they are acquainted
with matters of Applied Computer Science” [5]. Well, it is conceivable that disci-
plines become extinct.

4.1 Organization Modeling

For successful organization modeling (Enterprise Engineering) – especially with re-
spect to optimization – differentiation is vitally important. Figure 3 illustrates the pos-
sibilities regarding work processes and structures.

The capability to differentiate clearly is critical to the ability to optimize. This is im-
portant for the object-language level, the application field, as well as for the meta-
language level, the diagram language field. On both levels, the point is the reconstruction
of connector words (e.g. to do) and topic words (e.g. to work). On the meta-language
level, the developer gets to know the modeling method in greater detail.

(Work) Processes

(Work) Structure

Process

Architecture

Movement

Inventory

Means for Work
- software
- knowledge
- device

(Whereby?)

Work Input
- basic material
- operating supply

item
- data
(What from?)

Work Output
- product
- service schema

(Wherefore?)

Performer
- man
- machine
- interaction

(Who?)

Workplace
- any
- fixed

(Where?)

(What?)
Operation

(When?)
Work Sequence

(How?)
Work Procedure

Work Object
- physical
- intellectual

(Whereof?)

(Work) Processes

(Work) Structure

Process

Architecture

Movement

Inventory

Means for Work
- software
- knowledge
- device

(Whereby?)

Work Input
- basic material
- operating supply

item
- data
(What from?)

Work Output
- product
- service schema

(Wherefore?)

Performer
- man
- machine
- interaction

(Who?)

Workplace
- any
- fixed

(Where?)

(What?)
Operation

(When?)
Work Sequence

(How?)
Work Procedure

Work Object
- physical
- intellectual

(Whereof?)

Fig. 3. Differentiated work organization

On the object-language level, the grammar of the modeling language plays a vital
role. In the latter case, the organizational expert knowledge of the relevant application
domain must be represented in a structured way.

Modeling (topic words of the application field) and structuring (connector words of
the modeling language) are different but they supplement each other as complemen-
tary parts.

Even before the object-oriented system design, diagram languages have proved to
be suitable modeling languages for the organization of a company’s structures and
processes. Use cases for example are especially useful for the structural aspect (see
figure 4), while the Business Process Modeling Notation (BPMN) is suited ideally for
the procedural aspect (see figure 5).

www.manaraa.com

 Language-Critical Development of Process-Centric Application Systems 37

+

+8.1 IE collects goods from production
and checks identity

+

+8.2 IE checks quality

8.3 IE sorts goods

8.4 IE reports change in stock to IM

Employee of
Finished goods
inventory (IE)

Production

Inventory
Management (IM)

8. Finished goods inventory

+

+

+

+8.1 IE collects goods from production
and checks identity

+

+

+

+8.2 IE checks quality

8.3 IE sorts goods

8.4 IE reports change in stock to IM

Employee of
Finished goods
inventory (IE)

Production

Inventory
Management (IM)

8. Finished goods inventory

Fig. 4. Use case diagram (example: finished goods inventory)

Detailed descriptions of modeling languages can be found in various case collec-
tions [7] or OMG manuals. However, anyone who later, in the system design, intends
to specify the flow of work processes in greater detail is well advised to distinguish
the aspects like “operations”, “work procedures” and “sequence of work” or “work-
flows” orthogonally. The same applies to the organization structure and aspects such
as “workplace”, “vacancy”, “employee” or “work material” (see figure 3). The opti-
mization can now be considered sensibly and from different angles (aspects).

account stock changes

report stock changesstock FGcheck quality
receive FG and
check identity

Incoming
Finished goods (FG)

G
ea

r
In

c.

G
oo

ds
in

ve
nt

or
y

In
ve

nt
or

y
m

an
ag

em
en

t

account stock changes

report stock changesstock FGcheck quality
receive FG and
check identity

Incoming
Finished goods (FG)

G
ea

r
In

c.

G
oo

ds
in

ve
nt

or
y

In
ve

nt
or

y
m

an
ag

em
en

t

Fig. 5. BPMN diagram (example: incoming finished goods)

4.2 Method-Neutral Knowledge Reconstruction

The method-neutral knowledge reconstruction [8] is primarily communicative and
hardly any diagram representations are used.

In order to get a first picture of the important tasks, which are performed in close
cooperation with the users, we classify them roughly in the following three parts:

• Collection of propositions those are relevant for development by talking to the users.
• Clarification and reconstruction of the expert terminology that has been used.
• Establishment of a common enterprise expert language.

The collection of propositions relevant to the development can be done by using a
model, as shown in figure 6.

www.manaraa.com

38 T. Amin, T. Grollius, and E. Ortner

Object

INTERNAL

EXTERNAL

STRUCTURE

PROCESSThing
oriented

Occurence
oriented

a) b) c)

Constraints
d)

e) f) g)

Object

INTERNAL

EXTERNAL

STRUCTURE

PROCESSThing
oriented

Occurence
oriented

a) b) c)

Constraints
d)

e) f) g)

Fig. 6. Classification schema for propositions

The model is intended to aid the collection and to ensure that all potential types of
results for the system design have been scrutinized in consideration of their underly-
ing expert knowledge. The following list contains several propositions that can be as-
signed to the above fields (see figure 6):

a) An account has an account number.
b) An account is opened.
c) Opening an account results in an opening balance.
d) The total of all debit line items must be the same as the total of all credit line items

in double entry accounting.
e) A (personal) account is assigned to a business partner.
f) Shipment of goods is related to posting business transactions.
g) At the end of an accounting period, all of the accounts are closed; their values are

in a profit and loss account and ultimately gathered in the balance.

In order to clarify and reconstruct the identified expert terminology the following “de-
fects” are discussed and examined thoroughly with the future users or the company’s
experts.

Checking synonyms
Check for words with the same meaning (extension and intension) that can be inter-
changed.

e.g.: MEMBER and ASSOCIATE have the same meaning for DATEV1.

Eliminating homonyms
Check for words that are written or pronounced in the same way but have a different
meaning.

e.g.: STALK, which can mean either part of a plant or to follow someone around

Identifying equipollences
Different names are used for the same objects (extension) from different perspectives
(intension).

1 DATEV is a computer center and software house for the German-speaking tax profession

where the author worked as executive manager in software development for seven years.

www.manaraa.com

 Language-Critical Development of Process-Centric Application Systems 39

e.g.: Goods or merchandise of a company is referred to as STOCK from a quantitative
perspective and INVENTORY ACCOUNT from a value perspective.

Clarifying vagueness
As there is no clear delimitation (definition) of the terms in regard to their content (in-
tension), it may not be clear which objects belong to each term (scope, extension)

e.g.: Does RESIDENCE, the place where a CONSULTANT works, belong to the
term CHAMBERS for DATEV or not?

Replacing wrong designators
Discrepancies between the actual meaning of a word and the meaning assumed at first
(intension and extension)

e.g.: For DATEV, the CONSULTANT NUMBER does not define the function of a
tax CONSULTANT, but it defines the USER RIGHTS a tax CONSULTANT has
within DATEV.

This clarification results in further propositions relevant for development. Their
relevance for the result types (system design) can be examined with the help of a clas-
sification schema (see figure 6). Work on building a common expert language for a
company, which is aimed at integrating all of a company’s knowledge resources, can
be organized in different ways.

1. With the help of a repository, a kind of glossary will be created and administered.
This glossary will contain all the terms that are important for an organization (lan-
guage community), and should be designed for internal and external use.

2. A much more complex way, in comparison to (1.), of representing a company’s
knowledge is with an encyclopedia. The encyclopedia amounts to a conceptual
schema for data but will go substantially further in respect to terminological coher-
ences. This approach will distinguish inward and outward knowledge, which will
be administered in a repository as an enterprise knowledge base.

3. The enterprise expert language is a rational interim language that is implemented
on a meta-meta language level in the repository [9]. It is used for integrating and
translating other languages used in a company. For users, it is not necessary to
know the interim language itself.

Currently, the three variants discussed above can be found in industry worldwide. Ven-
dor-independent research is done in the field of SOA under the catchword Enterprise
Application Integration (EAI). Furthermore, companies like Oracle look into Applica-
tion Integration Architecture (AIA) and offer products such as Fusion. Other vendors
offer products like WebSphere (IBM) or NetWeaver (SAP) for the integration task.

4.3 Generally Object-Oriented System Design

After the development-relevant knowledge (see figure 7) has been reconstructed neutral to
specific methods and technology (e.g. according to Ortner [8]), and integrated into the
overall knowledge base of an enterprise using common language, then, in the system de-
sign, this knowledge is transformed into the result types of an object-oriented solution to
the task. Figure 7 shows an object-oriented system design according to Schienmann [10]
that has been extended for the design of service-oriented architectures of an enterprise.

www.manaraa.com

40 T. Amin, T. Grollius, and E. Ortner

When we speak of entirely object-oriented development of application systems, the
enlightening step is the introduction of objects from computing sciences as grammati-
cal objects. Grammatical objects are target points of language actions (e.g. writing,
speaking, thinking) in a sentence, whereby they can also be replaced by pronouns in
the sentence (e.g. one, he, him, this one). At school we have learned to speak of direct
and indirect objects, genitive objects and various prepositional objects.

Service
Application
(Procedure Part)

Result
Type

Inventory Procedure Process

Internal

External

Conceptual
Schema

Organization

Service
Application
(Data Part) Participation

Restrictions of

Work
Occurences

Fig. 7. Extended object-oriented enterprise design

In contradiction to what many computer scientists still believe, when modeling and
programming in computer science we do not concern ourselves with concrete or “on-
tological objects” such as this chair, that apple or my laptop. When speaking of ob-
jects “informatically” (i.e. modeling and programming), it is of particular importance
that abstract types such as “class” in a repository or the term “invoice” in an applica-
tion, are to be thought of as target points. The concrete, “ontological objects” are usu-
ally found in the application fields.

Computer science is the science where students learn how to talk constructively
about language (grammatical) objects, or more precisely, about abstract objects.
Needless to say, we can still start from the concrete objects of the application fields in
“Requirements Engineering” and when introducing the implemented solution, we can
refer back to the users’ concrete (ontological) objects.

The object-oriented approach in the development of application systems goes back
to Platon. Platon classifies objects from the perspective of human beings and their
languages into things (nouns, proper names) and actions, which can also be consid-
ered occurrences (verbs). If we transfer this classification to operating with data on a
computer, the object-orientation (resp. its object) will be classified into the fields of
data orientation (things) and procedure orientation (occurrences). This classification
shows why object-orientation is universal. It encompasses data orientation (data
classes) as well as procedure orientation (procedural classes).

Based on the results of organization modeling (enterprise engineering) and (em-
bedded) system design (see figure 1), the results from figure 7 are modeled (software
engineering) in the following methodical order:

1. Process modeling:
• BPMN diagrams (from organization modeling)
• State machine diagrams
• Activity diagrams
• ...
• Constraints (e.g. in Object Constraint Language (OCL))

www.manaraa.com

 Language-Critical Development of Process-Centric Application Systems 41

2. Participation modeling:
• Use cases (from organization modeling)
• Sequence diagrams
• Job descriptions (in the sense of structural organization)
• ...
• Constraints (e.g. organizational standards such as signature regulations)

3. Procedure modeling:

• Class diagrams (data classes and procedural classes)
• State machine diagrams
• Activity diagrams
• ...
• Constraints (e.g. plausibility checks at data entry in service-oriented applications)

4. Inventory modeling:

• Object type diagrams (for the conceptual schema)
• Dataflow diagrams (for specification of data that are exchanged)
• External schemas (extended as data classes)
• ...
• Constraints (e.g. semantic integrity rules for DBMS-enforced integrity)

5. Business goal modeling:

• SBVR
• ...

Enterprise Engineering and the reconstruction of development-relevant expert
knowledge from the application fields are highly communicative processes. Here,
users and developers communicate very “intensively” (in great detail and clearly)
with each other. Diagram languages play a minor role in this context. In contrast,
the (entirely) object-oriented design of a SOA with diagram languages must be per-
formed in an already highly "significative" way. This means that the terms of the
object language and the meta-language (e.g. “invoice” as an object-language termi-
nus and “procedural class” as a meta-language terminus) should be displayed as
independent as possible from their use in the judgment-context. The focus is on dis-
closing the types (software, concepts) that shall be implemented later. Diagrams are
ideally suited for this purpose.

The diagram languages for procedure modeling are of course very similar to the
diagram languages for process modeling. Procedure modeling comprises of the proc-
ess parts (algorithms), which run as service-oriented applications while a process is
being executed, as well as of those process parts, which can be specified in less detail
since they involve human work (e.g. following work plans).

The order (1.-4.) chosen here serves merely as a recommendation. The modeling
process is an iterative process, as every well-educated developer will know from prac-
tical projects (see figure 2).

www.manaraa.com

42 T. Amin, T. Grollius, and E. Ortner

5 Concretion in the Large

Organization-centric development of application systems has been derived from data-
centric [1] development. The development paradigm “applications follow processes”,
which is valid in today’s service-oriented architectures, complements, but does not
replace the data-centric approach. Therefore, SOA stands for a new paradigm, not a
shift in paradigm. The data-centric approach remains as important as ever, but due to
the triumphant progress of object-orientation and component-based development, it is
integrated in the overall architecture and work processes in a more “intelligent” way
(Platon was right!). In addition to data processing, work organization (enterprise en-
gineering) has become a subject in applied computer science (software engineering).

Fig. 8. Entirely object-oriented concretion of a service-oriented architecture

Figure 8 shows an enterprise represented in an entirely object-oriented way. On the
right, implementation aspects can be found; the right side lists the specific details of
the information technology available for implementation today. We are therefore only
talking about a “concretion in the large”. “IT and solution architects”, “integration
developers” and “deployment managers” must be able to deliver this concretion for
the enterprises (domains) that use information technology [11].

“Code development”, which is of course also important, in particular from the
point of view of the “service and solution testers” on site, is currently done in so-
called “low-wage countries” by well-trained people (near and offshoring). In com-
plementation to a “concretion in the large”, we are now talking about a “concretion in
the small.”

6 Dynamic Support and Optimization of Work Processes

For the dynamic management of application systems (see figure 2), it is necessary to
create and use a meta-information system whose most important part is the repository
system [9] as for example described by Berbner et al. [12]. In accordance to the

www.manaraa.com

 Language-Critical Development of Process-Centric Application Systems 43

much-noted work “The Quest for Resilience” by Hamel and Välikangas [13], future
enterprise networks will be implemented as elastic ecosystems [14] built from com-
ponents of different categories. These systems must be assembled in the best possible
way, thereby facilitating the systems to respond, possibly even self-actingly, to chang-
ing situations.

The ever changing job design (e.g. due to product changes) and work organization
is crucial to this approach. This is done considering

1. the aspects: optimized processes, best possible employee assignment and dynamic
IT-support (e.g. IT-services), as well as

2. the fact that some of the jobs that are part of these processes, are performed by em-
ployees who come from everywhere, or respectively, the jobs are done where per-
sonnel is available at low cost.

In this regard, organizing potential assignments for employees in work plans and es-
tablishing a global work base (see figure 9) is exceedingly relevant. Such a database
allows neutral (assignment-free) storage and maintenance. It could contain the
IT-services (data and program schemas) that are used anywhere in the world as pro-
gram-technological means (to work plans) for work in those processes. This way, an
enterprise’s IT-department organizes and controls the company’s work processes
worldwide in division of labor and dynamically using the Internet.

The protruding innovation of SOA is the extension of the concept of application
systems by work and organizational processes of enterprises. This makes organization
theory as it is found in Business and Social Sciences, the Engineering disciplines or in
Enterprise Engineering an “integral”, that is an interdisciplinary part, of Applied
Computer Science. And this in a way that has not been seen in previous years.

Assignment-neutral Organized
Schema Base

(IT-Services and HB-Services)

Heterogeneity of Hardware,
Operating Systems and

Applications

Frequently changing
(Business/Work) Processes

including Outsourcing and Offshoring

Variable Number of „Actors“
(natural or artificial)

Large-scale Distributed
Systems (e.g. Internet)

IT: Information Technology

Work Plans

HB: Human based

Accounting Schema Reporting Schema

Assignment-neutral Organized
Schema Base

(IT-Services and HB-Services)

Heterogeneity of Hardware,
Operating Systems and

Applications

Frequently changing
(Business/Work) Processes

including Outsourcing and Offshoring

Variable Number of „Actors“
(natural or artificial)

Large-scale Distributed
Systems (e.g. Internet)

IT: Information Technology

Work Plans

HB: Human based

Accounting Schema Reporting Schema

Fig. 9. Labor as a product

www.manaraa.com

44 T. Amin, T. Grollius, and E. Ortner

Concepts and institutions like the German REFA-Association for Work Design or
Methods-Time-Measurement (MTM) founded in 1924 (These are systems for time al-
lotment that have been used in Sweden as of 1950, in Switzerland since 1957 and in
Germany since 1960) suddenly constitute a field of activity and provide IT-businesses
and enterprises worldwide with the knowledge that information and computing scien-
tists possess. Due to Ubiquitous Computing, however, this also affects the courses of
study of Enterprise Engineering, Business and Social Sciences, Mechanical Engineer-
ing, Electrical Engineering or Civil Engineering, as all of them are concerned with
work science and process organization.

The following is a list of typical issues in optimization as they were recently elabo-
rated by a student team of the TU Darmstadt at the Bitkom competition “Best Process
Architecture” [15].

• Parallelization: Operations that are independent of each other must run in parallel
and thereby shorten the overall process duration.

• Optimization of single processes: In addition, we must analyze each process indi-
vidually to make improvements.

• Integration: Existing systems are integrated seamlessly in the new architecture so
that the available resources can be used efficiently and effectively.

• Elimination of information deficits: The interfaces between operations are analyzed
thoroughly so that the expected input or output will be found at the right time in the
right place.

• Reorganization or sequence optimization: Process analysis takes into account an
increase in efficiency due to reorganization of the order of single operations.

• Outsourcing: It is considered an alternative to outsource single processes, espe-
cially maintenance activities at the customer’s site, to external service providers.

• Elimination: During process analysis those operations must be eliminated that are
useless or do not contribute beneficially to the process result.

• Acceleration: Specific measures for shortening the overall process duration are vi-
tal, but not at the expense of quality and cost.

• Introduction of additional test steps: To ensure higher quality, it is useful to inte-
grate additional steps for checking the process.

From the perspective of an employee, there are three possibilities to be considered
when setting out to optimize work processes using IT:

− to reduce people’s workload through automation (resource: “software”)
− to support human work as for example using interactive applications (resources:

“software” and “knowledge”), or
− to improve people’s work qualifications (resource: “knowledge”)

Industrialization and automation were so successful in the previous decades that it is
very advisable to revert our efforts with respect to the listing above. With globalization
in mind as well as taking into consideration our worldwide division of labor, we should
“invest much more in education and as little as possible in further automation efforts.”
Technological progress cannot be stopped, but a world which is becoming increasingly
compact, can only cope with progress, if it is flanked by human education.

www.manaraa.com

 Language-Critical Development of Process-Centric Application Systems 45

7 Outlook

In Applied Computer Science, from a global standpoint, service-oriented architectures
constitute a new paradigm, but do not result in a paradigm shift. Managing data and
managing processes are complementary and lead to entirely new job descriptions. In
the expert languages of globallyinteracting IT-enterprises these new professions are
called:

• IT-Architect
• Business Analyst
• Application Developer
• Service and Solution Tester
• Software Developer
• Deployment Manager
• Integration Developer
• Solution Architect
• Code Developer
• etc.

Nevertheless, people, who perform these jobs throughout the world, have the least say
in who performs which kind of work when and where.

There is nothing more important for our survival than that the humanities take up
the challenge to newly enter in a process of enlightenment. Logic, Mathematics,
Linguistics and Computer Science, for example, are studies of the humanities.
“Normative Logic and Ethics” [16] as well as their advancement to an “Encyclopedia
Philosophy and Philosophy of Science” [17] provide us with the necessary fundamen-
tal education and terminology, in the sense of a Universal Literacy, to fulfill this task.

Therefore, we appeal for constructive computer sciences [17] to become basic edu-
cation for all citizens. As a matter of course, this basic education should be graded
and differentiated into interdisciplinary (rather universities) and infradisciplinary
(rather schools) knowledge.

The root of the matter is teaching a disciplined use of language.

Anyone who is a democrat and who is interested in participating in remodeling our
pluralistic democracies into republics with a “plurality-tolerating form of life” [18] all
over the world is well-advised to try this in a language-critical way. This form of life
is characterized by the fact that it teaches people how they can think correctly instead
of teaching them what they should think. – Parlemus!

References

1. Wedekind, H., Ortner, E.: Systematisches Konstruieren von Datenbankanwendungen – Zur
Methodologie der Angewandten Informatik. Carl Hanser Verlag, Munich (1980)

2. Lehmann, F.R.: Fachlicher Entwurf von Workflow-Management-Anwendungen. B.G.
Teubner Verlagsgesellschaft, Stuttgart, Leipzig (1999)

www.manaraa.com

46 T. Amin, T. Grollius, and E. Ortner

3. Nussbaum, D., Ortner, E., Scheele, S., Sternhuber, J.: Discussion of the Interaction Con-
cept focusing on Application Systems. In: Proc. of the IEEE Intl. Conf. on Web Intelli-
gence 2007, pp. 199–203. IEEE Press, Los Alamitos (2007)

4. Grollius, T., Lonthoff, J., Ortner, E.: Software industrialisierung durch Komponentenorien-
tierung und Arbeitsteilung. HMD-Praxis der Wirtschaftsinformatik 256, 37–45 (2007)

5. Oberweis, A., Broy, M.: Informatiker disputieren über Anwendungsnähe der Disziplinen.
Computer Zeitung 29 (2007)

6. Mittelstraß, J.: Der Flug der Eule – Von der Vernunft der Wissenschaft und der Aufgabe
der Philosophie. Suhrkamp Verlag, Frankfurt (1989)

7. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Boston (2001)
8. Ortner, E.: Methodenneutraler Fachentwurf – Zu den Grundlagen einer anwendungsorien-

tierten Informatik. B.G. Teubner Verlagsgesellschaft, Stuttgart, Leipzig (1997)
9. Ortner, E.: Repository Systeme, Teil 1: Mehrstufigkeit und Entwicklungsumgebung, Re-

pository Systeme, Teil 2: Aufbau und Betrieb eines Entwicklungsrepositoriums. Infor-
matik-Spektrum 22(9), 235–251 resp. 22(9), 351-363 (1999)

10. Schienmann, B.: Objektorientierter Fachentwurf – Ein terminologiebasierter Ansatz für die
Konstruktion von Anwendungssystemen. B.G. Teubner Verlagsgesellschaft, Stuttgart,
Leipzig (1997)

11. Jablonski, S., Petrov, I., Meiler, C., Mayer, U.: Guide to Web Application and Platform
Architectures. Springer, Berlin (2004)

12. Berbner, R., Grollius, T., Repp, N., Heckmann, O., Ortner, E., Steinmetz, R.: Management
of Service-oriented Architecture (SoA)-based Application Systems. Enterprise Modelling
and Information Systems Architectures 2(1), 14–25 (2007)

13. Hamel, G., Välikangas, L.: The Quest for Resilience. Harvard Business Review (Septem-
ber 2003)

14. Corallo, A., Passiante, G., Prencipe, A.: Digital Business Ecosystems. Edward Elgar Pub-
lishing, Cheltenham (2007)

15. Ghani, H., Koll, C., Kunz, C., Sahin, T., Yalcin, A.: Concept for the BITKOM University
Challenge 2007. Best Process Architecture (2007), http://www.bitkom.org

16. Lorenzen, P.: Normative Logic and Ethics, 2nd edn. B.I.-Wissenschaftsverlag, Zurich
(1984)

17. Mittelstraß, J.: Enzyklopädie Philosophie und Wissenschaftstheorie, vol. 1 (1980), vol. 2
(1984), vol. 3 (1995), vol. 4 (1996) . J.B. Metzler Verlag, Stuttgart

18. Lorenzen, P.: Constructivism. Journal for General Philosophy of Science 25(1), 125–133
(1994)

www.manaraa.com

Balancing Business Perspectives in Requirements
Analysis

Alberto Siena1, Alessio Bonetti2, and Paolo Giorgini2

1 FBK - Irst, via Sommarive, 18, 38050 - Povo, Trento, Italy
siena@fbk.eu

2 University of Trento, via Sommarive, 14, 38050 - Povo, Trento, Italy
{bonetti,giorgini}@fbk.eu

Abstract. In modern organisations, the development of an Information System
answers to strategic needs of the business. As such, it must be aligned at the same
time with software and corporate goals. Capturing its requirements is a complex
task as it have to deal with a variety of different and potentially conflicting needs.
In this paper, we propose a novel conceptual framework for requirements mod-
elling and validation, based on economic and business strategy theory.

Keywords: Software Engineering, Requirements Engineering, Business
Strategy, Goal Analysis.

1 Introduction

Understanding and analysing the purpose of a software system before defining its de-
sired functionalities, results crucial and more and more mandatory in the development
of modern information systems [7]. Early requirements analysis [1] is currently gaining
popularity in the requirements engineering community as an effective way to under-
stand the reasons of a new system with respect to the organisational setting in which
it will operate. In this context, goal-oriented techniques have been proposed in the last
decade [17,9,5] to answer why questions, besides what and how, regarding system func-
tionality. Answers to why questions ultimately link system functionality to stakeholder
needs, preferences and objectives.

Goal analysis techniques [4] are useful to understand the structure and the corre-
lations among goals, their decomposition into more fine-grained sub-goals, and their
relation with operational plans. Moreover, reasoning techniques applied to goal mod-
els [8] can be very useful to verify properties of the model and possibly to support the
analyst in the conflict resolution process. Although these techniques result very useful
to reason about single goal models, they are inadequate to support strategic decisions
of an organisation. This is mainly due to the fact that they assume the perspective of
the designer of the system and do not consider other dimensions like the business or
financial needs that are crucial in decision process of an organisation.

In this paper, we revise the Tropos methodology [3] extending its goal reasoning
framework [9] with a more enterprise and business oriented approach, the balanced
scorecards. The adoption of balanced scorecards allows the analyst to have a more
comprehensive vision of the enterprise and consequently to adopt solutions that can

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 47–59, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.manaraa.com

48 A. Siena, A. Bonetti, and P. Giorgini

be related to its strategic decisional process. The purpose of this paper is twofold. On
the one hand, it introduces the conceptual framework and the methodology for guiding
the analyst in the requirements analysis process, by assuming and combing multiple
perspectives of analysis (i.e., financial perspective, internal processes perspective, cus-
tomer perspective, learning and growth perspective). On the other hand, it evaluates
such a framework with respect to its actual contribution to the software engineering
process, by means of a real world example.

The paper is structured as follows. Section 2 presents our experience with a require-
ments analysis case and the problems it rises. Section 3 introduces the underlying con-
cepts of goal analysis techniques and the Balanced Scorecards business modelling ap-
proach. Section 4 presents the new Balanced Goalcards framework. Section 5 discusses
the results that emerge from the application of the framework to our case. Section 6
concludes the paper.

2 An IS for Logistics

Frioli S.n.C. is a small Italian transport company located in the Trentino region, inter-
ested in developing a new information system to support its business. The company was
founded in the sixties as a family company, and today it has five associates and four full-
time employees. It owns five trucks and four trailers, and it transports both construction
material (mainly cement) and undifferentiated goods. The transport activity is 80% in
northern Italy, 10% in the rest of Italy, and 10% among Austria, Germany and France.
Its costs are mainly related to fuel, insurance and road tolls. First need of the company
is to optimise travels, and a new information system seems to be a necessary step in this
direction. Our purpose is to gather the requirements for such an information system,
ensuring them to be aligned with the actual business culture of the company.

Requirements have been initially collected after a number of meetings with peo-
ple in the company. The main objective of these meetings was to understand the com-
pany’s strategy and related activities. Unfortunately, after that it was not possible to have
further meetings with the company (mainly for reasonable business constraints). This
methodological constraint is the major motivation for our work. In a perfect world, with
full information and unlimited resources, we could elicitate the requirements perfectly
with effectiveness and efficiency. But in the real world, the challenge of software de-
velopment is to overcome any kind of limitations - time constraints, budget constraints,
communication obstacles, domain-specific skills, implicit information, and so on - to
deliver the right solution at the right time and for the right market [6].

Our experience with the company has confirmed such a problem. A modelling session
followed the interviews, with the purpose to model and formally analyse the models. Al-
ready during the modelling phase, we have encountered suspicious inconsistencies. For
instance, managers declared interest in reducing costs but they were not interested to
reduce phone customer support and off-line marketing techniques in favour of on-line
services. The reason of this can be shortly explained as follows: the company has cur-
rently a positioning in the market and in the local community and doesn’t want to lose it.
Its positioning is built on top of the company’s philosophy that is implicit and depends
on many factors, such as quality of directors and employees, local market characteris-
tics, history and structure of the company, results obtained, etc. In this scenario, on-line

www.manaraa.com

Balancing Business Perspectives in Requirements Analysis 49

marketing can produce a very negative impact and change heavily the customers’ per-
ception of the company. So, even if the company wants to reduce costs, choosing the
lower-cost solution is not the right solution.

These and other considerations showed clearly the need to:

i) support the analyst in capturing during the interviews both technical requirements
and business strategy needs;

ii) provide a formalism to represent business entities in the software development
process.

3 Background

3.1 Tropos and Goal Analysis

Tropos [3] is an agent-oriented software development methodology, tailored to describe
the system-to be in terms of its requirements. It is intended to capture both functional
and non-functional requirements, and, as such, a special role is given to the capability
to model and understand the stakeholders’ goals. The methodology analyses the re-
quirements of the system-to-be in terms of goal models. Goals basically represent the
functional requirements, while the softgoals represent the non-functional requirements
of the system.

Goal models are represented by means of goal graphs composed of goal nodes and
goal relations. Goal relations can be AND and OR decomposition relations; or, they
can be contribution relations, partial - the “+” and “−” relations - and full - “++” and
“−−” relations. In practice, a goal graph can be seen as a set of and/or trees whose
nodes are connected by contribution relations arcs. Root goals are roots of and/or trees,
whilst leaf goals are either leaves or nodes which are not part of the trees.

For each goal of a goal graph, we consider three values representing the current evi-
dence of satisfiability and deniability of goal: F (full), P (partial), N (none). We admit
also conflicting situations in which we have both evidence for satisfaction and denial of
a goal. So for instance, we may have that for goal G we have fully (F) evidence for the
satisfaction and at the same time partial (P) evidence for denial. Such an evidence is ei-
ther known a priori or is the desired one. In both cases, the conflicts arise by reasoning
on the graphs with the techniques explained below.

On goal graphs, it is possible to analyse it with both forward reasoning and back-
ward reasoning.

Forward Reasoning. Given an initial values assignment to some goals, input goals from
now on (typically leaf goals), forward reasoning focuses on the forward propagation of
these initial values to all other goals of the graph according to the rules described in [9].
Initial values represent the evidence available about the satisfaction and the denial of a
specific goal, namely evidence about the state of the goal. After the forward propagation
of the initial values, the user can look the final values of the goals of interest, target
goals from now on (typically root goals), and reveal possible conflicts. In other words,
the user observes the effects of the initial values over the goals of interests.

www.manaraa.com

50 A. Siena, A. Bonetti, and P. Giorgini

Backward Reasoning. Backward reasoning focuses on the backward search of the pos-
sible input values leading to some desired final value, under desired constraints. We set
the desired final values of the target goals, and we want to find possible initial assign-
ments to the input goals which would cause the desired final values of the target goals
by forward propagation. We may also add some desired constraints, and decide to avoid
strong/medium/weak conflicts.

The present work is based on the consideration that this kind of systematic analysis
of the stakeholders’ goals is necessarily general-purpose and performed from the per-
spective of the requirements engineer. As such, it provides little help in understanding
the business specific requirements of the organisation. To overcome these difficulties,
we refer to the “Balanced Scorecard” approach.

3.2 Balanced Scorecards

The Balanced Scorecards (BSC) framework was introduced by Kaplan and Norton in
the early nineties [15] as a new strategy management approach, able to overcome the
limitations they found in the then existing management methodologies. Essentially, pre-
existing financial analysis techniques used to focus on monetary indicators, without
taking into account non-measurable capitals of a company, such as knowledge or cus-
tomers loyalty. As opposite, the BSC approach relies on three basic ideas [13]: i) both
the material and immaterial objectives are important for the company; ii) the objectives,
material and immaterial, can be numerically measured via properly chosen metrics; iii)
the strategy is the resultant of the balancing of different kinds of metrics. In a broad
sense, the strategy consists in the set goals, which will determine the success of the
organisation in the market [16]. The strategy is the actual realisation of the mission,
values and vision: the Mission statement describes the reason of being of the organisa-
tion and its overall purpose; the Business Values represent the organisation’s culture,
and turn out in the priorities that drive the organisation’s choices; the Vision describes
the goals to be pursued in the medium and long term, and how the organisation wants
to be perceived from the market.

In the BSC approach, the strategy is bounded with a conceptual tool, the Strategic
Map [12]. It is commonly represented as a diagram, containing goals and their inter-
connections. The connections are cause-effect relationships, meaning that the achieve-
ment of a goal brings to the achievement of its consequent. The strategic map is comprised
by four different perspectives, i.e., the the financial perspective, the internal processes
perspective, the customer perspective and the growth perspective.

The Economic-Financial Perspective. This perspective looks at the company from the
point of view of the profitability, as well as solvency, liquidity, stability and so on. It
expresses how well are the companys finances managed to achieve the mission. The
metrics associated with this perspective are monetary and economic such as ROI, ROE,
and more low-level values.

The Customer Perspective. Customers are the key stakeholders for the success of a
company, so it is important to identify the target customer and define the properties that
meet his needs. The ultimate purpose is to make products attractive for the customers.

www.manaraa.com

Balancing Business Perspectives in Requirements Analysis 51

The Internal Processes Perspective. The goals associated with this perspective are
those that can have an impact on the internal effectiveness and efficiency of the com-
pany. Also, the goals that attain human and organisational resources are relevant, and
can be measured by metrics such as are time, turnaround time, internal communications
rating and so on. For instance, the choice to use e-mails instead of the telephone could
improve the processes.

The Learning and Growth Perspective. The fourth perspective describes the long-
term success factors. It is important to understand the characteristics that should equip
the human, informative and organisational resources. So for instance, the choice to train
the employees to use IT resources could allow the company to stay on the market also
in the evolving global economy.

Differently from the Tropos goal analysis framework, the BSC is not intended to
support formal analysis. However, its conceptual model can successfully capture the
business aspects of an organisation. Thus, we aim to extend the representation capabil-
ities of Tropos goal diagrams with the conceptual expressiveness of the BSC.

4 Balanced Goalcards

With the term “Balanced Goalcards” we refer to a novel approach for conceptual mod-
elling that aims at aligning the business-centred needs of an organisation with IT-
oriented requirements. The approach extends the i*/Tropos methodology in both its
modelling and analysis capabilities, and turns out in the ability to capture strategic re-
quirements that are consistent with economic principles. The methodological frame-
work of the approach is shown in Fig. 1. Shortly, the first step is the domain modelling
and consists in the definition of the basic organisational settings. The actors are iden-
tified and their strategic dependencies are modelled. This phase follows exactly the
Tropos methodology guidelines (see [3] for more details). Then, in the strategy mod-
elling, the business context is modelled. Firstly, the mission of the organisation should
be made clear, and then business values and vision. Using as leading parameters these
root entities, the four different perspectives are modelled separately. The perspectives
are then joint in a goal diagram that represents the Strategic Map. Finally, the map is
validated along three dimensions: conflicts detection and resolution, minimisation of
costs, and evaluation of unpredictable events. The result of the validation is the actual
requirements system.

4.1 Strategy Modelling

The idea is that the Tropos early requirements phase is led by the emergence of the
strategic map. The strategic map is represented as a Tropos goal diagram, so that BSC’s
cause-effect relations are replaced by Tropos relations. AND-decompositions are used,
when multiple cause-effect relations exist, and there is the evidence that the decomposed
goal can’t be reached if at least one of the sub-goals is not achieved. OR-decompo-
sitions are used, when multiple cause-effect relations exist, but achieving one of the
sub-goal is enough to consider achieved the parent goal. If there is no clear evidence of

www.manaraa.com

52 A. Siena, A. Bonetti, and P. Giorgini

Actors
modelling

Strategic
dependencies

modelling

M
is

si
on

Financial
Perspective

Customer
Perspective

Internal
Processes

Perspective

Learning and
Growth

Perspective

Strategic Map

V
is

io
n

Conflicts
detection

Costs
minimization

Analysis of
the events

Strategic
RequirementsOrganization

Domain modelling Strategy modelling Validation

Requirements Analysis Process

Balanced Goalcards Modeling Framework

Vision and Business Values

Vision and Business Values

Fig. 1. The Balanced Goalcards methodological framework

a decomposition, a contribution link is used. Carefully evaluating the contribution met-
rics (“+”, “−”, “++” and “−−”, see section 3 for the guidelines) allows the designer to
describe in a more precise and realistic way the mutual influence among goals.

Mission. The concept of mission is mapped as the root goal. Frioli is a transportation
company, so we have a root in the goal “Delivery service be fulfilled” as in Fig. 2(a).
The root goal is further analysed by a decomposition into more operational goals (“Or-
ders be received”, “Goods be delivered” and so on). There could also be more that
one root, if the company’s business is wider.

Business Values. The business values are represented as softgoals. They emerge from
both, an explicit indication of the organisation to be modelled, and the perception of the
analyst. For instance, “Customer loyalty”, “Timeliness”, “Care corporate image”, and
so on (Fig. 2(b)) are business values. They are linked in weak cause-effect relations (rep-
resented as contributions in the picture). The “Long-term value for the associates”
general-purpose goal is possibly reached directly, via a “Growth” of the company; or
indirectly, via the “Customers loyalty” given by the “Quality of service”. “Effective-
ness” is related in particular with the inner processes of the company, whereas “Care
corporate image” refers to how to company is perceived by the customer.

Vision. The vision represents the link between what the organisation is and what it
wants to be. For the Frioli company, no vision has been clearly identified. This mainly
because it is implicit in the managers’ rationales, and the challenge is to capture it and
make it explicit, so that we can elicit consistent requirements.

www.manaraa.com

Balancing Business Perspectives in Requirements Analysis 53

Orders be
received

Vehicles be
available

Route be
planned

Goods be
delivered

AND

Delivery
service be

fulfilled
AND

(a)

Long-tern value
for the associates

Growth

Effectiveness Quality of
service

Care
corporate

image

Customers
loyalty

Timeliness

+

+
+

+

+

+

(b)

Fig. 2. (a) The mission of the company. (b) The business values. Ovals represent goals, and clouds
represent softgoals.

Strategy. We want to make the strategy to emerge during the goal modelling, through
the building and evaluation of the strategic map. We want to capture the business needs,
and this means we need also to model the business profile of the company. In order to do
this, we adopt here the classical BSC-based modelling approach. In detail, we build our
goal model by taking into account the four perspective mentioned above: the economic-
financial perspective, the customer perspective, the internal processes perspective and
the learning and growth perspective.

Economic-financial Perspective. From the economic perspective, we observe an im-
portant effort of the Frioli company to contain costs (see Fig. 3). There are two kinds
of costs: management costs and supply costs. Supply costs are intrinsic to the transport
activity, such as fuel and tolls. On the other hand, management costs are related to the
administration of the business; TLC are an important part, but also the extra payments
the arise from unforeseens.

Customer Perspective. From this perspective, it is important to understand in which
way a company can be attractive for the customer (Fig. 4). The overall image of the
company (“Care corporate image”) is important, as well as the details, such as the
look of the personnel and of the documents. The communications with the customer
(“Care the communications with customers”) are important for the customers to be
loyal to the company. Also, an important goal is to be able to offer an international
transportation service. Even if not frequent, the lack of this service could affect the
perception of the customer in the company’s capabilities.

+

Reduce
expenses
for tolls

Minimize
in-vain tripsReduce

TLC costs

Reduce
costs

Sign
insurance
contracts

Reduce
management

costs
OR

Reduce
costs
OR

Reduce costs
for unforeseens
and casualties

Reduce
supply costs

OR
Reduce

expenses
for fuel
AND

Reduce
waste

Fig. 3. The Economic-financial Perspective

www.manaraa.com

54 A. Siena, A. Bonetti, and P. Giorgini

+

Care
the look of the

employee

Care
the look of the

documents

Behaviour
code

Be friendly in
communications

Consultancy

Be available
at communicating

with customers

Care
corporate

image
AND

International
freight

Capability
to satisfy short-term

commitments

Capability to
administrate
shipments

Care the
communication
with customers++

++

++
++

Fig. 4. The Customer Perspective

Internal Processes Perspective. Economic-financial goals and customer’s strategy have
to be translated into internal processes. Notice that we don’t want to actually model the
sequences of activities that form the company’s business processes. What we want to
capture here is the why of the processes. The processes shall allow the company to achieve
its goals, so we model only the low-level goals that the internal activities are expected
to fulfil (Fig. 5).

++D

+

+D
+S

++

++S+

+S

++D

++S

+

+S

Reduce
route errors

Reduce
communication

errors
Reduce
delivery
errors

Equip
vehicles
with GPS

Detailed
daily info
on routes

Updated
news on
viability

Verify
route and

delivery time

Verify
availability of
the vehicles

Increase quality
and frequency of

maintenance actions

Integration
with the

customers IS

Select
high quality
componentsMinimize

crashes
Minimize
injuries

Continuous
monitoring of

work tools

Buy
injury-protection

clothes

Verify the
feasibility of

the order
AND

Reduce
malfunctionings

and errors
AND

Fig. 5. The Internal Processes Perspective

Learning and Growth Perspective. From this perspective, the company has a little
margin of technical improvement. For instance, it could acquire new tools (for self-
made reparations) or train the personnel (Fig. 6). Some other goals are related to the
acquisition of new customers. More ambitious growth plans, such as investments in
new market segments, are not present in the company.

4.2 Validation of the Strategic Map

The last step consists in putting together the perspectives and balance them into a
consistent strategy. One of the strength points of the original BSC framework is its

www.manaraa.com

Balancing Business Perspectives in Requirements Analysis 55

++

+

++S
+D

Safe-drive
courses

Acquire
new tools

Professional
staff

Acquire
proficiency

New
customers
acquisition

Gain
proficiency

Knowledge
of foreign
languages

Acquire new
knowledge Marketing

Fig. 6. The Learning and Growth Perspective

simplicity; using a goal diagram based approach causes the level of complexity to grow
up (see Fig. 7), and this raises the need for formal analysis able verify and validate the
models. The first problem (verification) can be solved with goal analysis techniques.
The second problem (validation) is more complex, since it requires to align the models
with economic principles. For this purpose, we have defined an analysis methodology
comprised by three steps: conflicts resolution, costs minimisation and risk prevention.

Conflicts Resolution. A conflict is a situation where the satisfaction of some subgoals
prevents (fully or partially) the top goals from being fulfilled. Such kind of situation is
extremely dangerous because it can undermine the enforcement of the strategy. But it
results difficult to be detected, specially when the strategic map becomes complex. The
procedure that we use for conflicts detection and resolution is the following: i) we exe-
cute backward reasoning in order to find a possible values assignment for leaf nodes that
satisfy all the top goals; ii) if the solution introduces a conflict for some of the top goal
we start again backward reasoning for each of the conflicting goal; iii) the whole goal
model is then modified accordingly to the partial results obtained in the previous step.

So for example, in Fig. 7, the goal “Verify the feasibility of the order”, introduced
in order to “Reduce malfunctioning and errors”, caused a conflict with the goal “Re-
duce management costs”. Since the company privileges the financial perspective
over the internal processes one, the first goal has been discarded.

Costs Minimisation. Due to OR-decompositions and multiple contribution relations,
different strategies can be adopted. To select the best one we recall the BSC funda-
mentals, arguing that each alternative has a different cost for the organisation. So we
assign to each goal a numerical value, which represent its cost. If possible, we evaluate
its monetary cost; so for instance the actual cost of the “Consultancy” can be accu-
rately estimated. Otherwise, we search for a suitable metrics; for instance, for transport
companies “timeliness” can be evaluated and translated into a numerical value. Costs
are then associated to goals as meta tags, so that each possible strategy will have by
this way a corresponding weigh in term of its resulting cost. The selection of the best
strategy will be based on the comparison of that costs.

For instance, in Fig. 7, the goal “Customers loyalty” can be achieved either adopting
a marketing strategy (e.g., promotional campaigns) or introducing a dedicated software
able to reduce delivery errors. However, a new software can be very expensive and
adopting marketing-based strategy could be more convenient.

Risk Prevention. Risk is something that heavily affects a company’s life. Risky events
are outside the control of an organisation and can prevent its strategy to be accom-
plished. We take into account this problem by introducing in the diagrams a new entity

www.manaraa.com

56 A. Siena, A. Bonetti, and P. Giorgini

- the “Event”. Events are linked via −−S contribution relations to one or more goals.
So, if an event occurs (i.e., its SAT value equals to P or F), then the affected goal is in-
hibited. We have no control over the occurrence of the event; however, by assigning the
SAT value to the event, we can perform bottom-up analysis and see what is the potential
effect of the event.

For example, in Fig. 7 the event “Crashes” can potentially compromise the whole
long-term strategy having a negative impact on the reduction of costs.

5 Evaluation

In order to verify our approach, we have implemented a CASE tool, the B-GRTool
(Balanced-GoalCards Tool). The tool has been implemented as an extension of the GR-
Tool [9] and maintains all its functionalities, including reasoning techniques like for-
ward and backward reasoning. Besides the standard GR-Tool scenarios, the B-GRTool
supports views on single scenarios that are used to build the balanced perspectives. We
used the tool to model the strategy for Frioli S.n.C. according to the approach shown
in previous section. An almost complete goal model is illustrated in Fig. 7. It contains
the mission and values of the company, together with the four perspectives; notice that
during the validation phase, we have completed and refined the model by establishing

Table 1. Perspective-based comparison of four possible scenarios. The “S” columns contain Sat-
isfiability values, whereas the “D” columns contain Deniability values.

Scenario: 1 2 3 4

S D S D S D S D

V
a

lu
e

s

Long-term value for the associates P P P P

Customer loyalty P P P P

Sign insurance contracts P T

Reduce management costs P P T P

Reduce supply costs P P T P

Minimize in-vain trips T

P T T T

Capability to satisfy short-term commitments P

Care the communication with customers T P P

Care corporate image T P P P

International freight P P T P

Behavior code T T

Equip vehicles with GPS T

Reduce malfunctioning and errors P T P

New communication media P T P T

Improve customer-carrier-receiver comm. T P P P

Increase frequency of maintenance actions P P P P

New customers acquisition T T P P

Acquire new tools P P P T

Marketing T P P

Acquire new knowledge P T P

(P = “Partial”, T = “Total”)

E
c
o

n
o
m

ic

p
e

rs
p

e
c
ti
v
e

Reduce costs for unforeseens and casualties

C
u
s
to

m
e
r'
s

p
e

rs
p

e
c
ti
v
e

In
te

rn
a

l
p
ro

c
e

s
s
e

s

p
e

rs
p

e
c
ti
v
e

L
e

a
rn

in
g

a
n

d
 g

ro
w

th

p
e

rs
p

e
c
ti
v
e

www.manaraa.com

Balancing Business Perspectives in Requirements Analysis 57

Long-tern value
for the associates

Growth

Effectiveness

Quality of
service

Care
corporate

image

Customers
loyalty

Timeliness

+

+ ++D

+D

+

+

+
+

+

++

+ ++S

+D

++D

+D

+
+

+

Crashes

No route
via Austria

Financial
Perspective

Customer
Perspective

Internal
Processes

Perspective

Learning and
Growth

Perspective

+

+

+
+

+

++

+

--S

+

+

-S

+

Event

SoftGoal

++S

--S

+

+

+

++S

+D

+

++S +

+D

+S

++

++S

+

+S

++D

+S

++S
+

+S

Orders be
received

Vehicles be
available Route be

planned

Reduce
expenses
for tolls

Minimize
in-vain trips

Reduce
TLC costs Reduce

costs

Sign
insurance
contracts

Care
the look of the

employee

Care
the look of the

documents
Behaviour

code
Be friendly in

communications

Consultancy

Be available
at communicating

with customers

Reduce
route errors

Reduce
communication

errors Reduce
delivery
errors

Equip
vehicles
with GPS

Modify
corporate
structurre Buy more safe

and efficient
vehicles

Optimize
routes

Detailed
daily info
on routes

Updated
news on
viability

E-mail

VoIP

Verify place and
modality of delivery

with sender

Verify place and
modality of delivery

with recipient

Verify
route and

delivery time

Verify
availability of
the vehicles

Increase quality
and frequency of

maintenance actions

Norm-compliant
vehicles

Integration
with the

customers IS

Select
high quality
components

Minimize
crashes

Minimize
injuries

Continuous
monitoring of

work tools

Buy
injury-protection

clothes

Vehicles
availability

Errands for
the requests

Safe-drive
courses

Acquire
new tools

Professional
staff Acquire

proficiency

New
customers
acquisition

Knowledge
of foreign
languages

Acquire new
knowledge

Marketing

Goal

Reduce
management

costs
OR

Reduce
costs
OR

Reduce costs
for unforeseens
and casualties

AND

Reduce
supply costs

ORReduce
expenses

for fuel
AND

Reduce
waste
AND

Care
corporate

image
AND

International
reight

AND

Capability
to satisfy short-term

commitments
AND

Capability to
administrate
shipments

AND

Care the
communication
with customers

AND

Improve
customer-carrier-recipient

communication
AND

Verify the
feasibility of

the order
AND

New
communication

media
OR

Reduce
malfunctionings

and errors
AND

Goods be
delivered

AND

Delivery
service be

fulfilled
AND

Legend

Fig. 7. An (almost) complete goal model for the Frioli S.n.C. case study

further relations (contributions and decompositions). Table 1 shows the metrics that re-
sult from the goalcards; due to lack of space, only a subset of the goals can be shown.
The four scenarios correspond to alternative strategies, each of which gives different
priorities to different goals.

www.manaraa.com

58 A. Siena, A. Bonetti, and P. Giorgini

Scenario 1: The Current Strategy and Business Values of the Company. In this
case, some goals are arbitrarily considered more important than others. For instance,
it is extremely important the “Customer loyalty” obtained offering a reliable service.
This requires a particular attention to “Care corporate image” and to “Care the com-
munication with customers”.

Scenario 2: A Growth-oriented Strategy. The focus of the analysis is on goals such
as “Acquire new tools” or “New customers acquisition”. What we obtain is a strat-
egy that privileges the growth, but goals such as “Reduce management costs” and
“Reduce costs for unforeseens and casualties” are denied. If a company wants to
grow, it is extremely difficult to reduce at the same time the costs.

Scenario 3: A Costs-reduction Strategy. In this case, the focus is on the economic and
the internal processes perspective, and particularly on goals such as “Reduce manage-
ment costs” or “Reduce expenses for fuel”. The resulting strategy allows the com-
pany to satisfy all goals, but suggests to abandon the international freight, and some
non-essential goals are denied.

Scenario 4: An Innovation-oriented Strategy. In this case the learning and growth
perspective has again a relevant influence on the strategy, but caring at the same time
the internal processes one. The resulting strategy is similar to the one of scenario 2, but
it is now possible to contain costs.

Some interesting results come from the case study. Despite their claim of the “Growth”
as a business value, the actual strategy does not reflect such a will. It is possible to see
in Fig. 7 that the learning and growth perspective has a few number of goals. The sce-
narios above also confirm this perception. So we observe that, despite the fact that the
company wants to grow, its implicit values do actually privilege stability. This observa-
tion is reinforced by a look at the customer perspective: it has an important impact on
the realisation of the business values. In particular, we see that many goals exist in order
to satisfy the “Customer loyalty” soft-goal. Through the customer loyalty, the general-
purpose “Long-term value for the associates” is intended to be reached. Thus, the
company seems to have a well-established relation with customers, and wants to keep
it, without going further into market risks. So the resulting requirements system should
privilege this status quo arrangement.

6 Conclusions

The importance of business criteria is explicitly recognised in particular in the e-Co-
mmerce engineering, where value exchanges play a role in understanding and generat-
ing requirements for the system [10]. Also, in e-Business, some approaches exist, which
focus on the need for the alignment of IT and business strategy [2,11]. In this paper we
have presented a new methodological framework for modelling requirements and vali-
dating them against a business strategy: goal graphs are used to represent the strategic
map, and the economic metrics are associated to goals’ satisfiability and deniability;
this allows to reason on the metrics and analyse the diagrams, building balanced re-
quirements systems. We have reported the use of the framework in our experience with
a transport company, trying to evaluate the results by comparing different scenarios and
estimating the effectiveness gained in gathering requirements.

www.manaraa.com

Balancing Business Perspectives in Requirements Analysis 59

References

1. Alencar, F., Castro, J., Cysneiros, L., Mylopoulos, J.: From early requirements modeled by
the i* technique to later requirements modeled in precise UML. In: Anais do III Workshop
em Engenharia de Requisitos, Rio de Janeiro, Brazil, pp. 92–109 (2000)

2. Bleistein, S.J., Aurum, A., Cox, K., Ray, P.K.: Strategy-oriented alignment in requirements
engineering: Linking business strategy to requirements of e-business systems using the soare
approach, vol. 36 (2004)

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8(8), 203–236 (2004)

4. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci-
ence of Computer Programming 20(1-2), 3–50 (1993)

5. Delor, E., Darimont, R., Rifaut, A.: Software quality starts with the modelling of goal-
oriented requirements. In: 16th International Conference Software & Systems Engineering
and their Applications (2003)

6. Ebert, C.: Requirements before the requirements: Understanding the upstream impact. In: RE
2005: Proceedings of the 13th IEEE International Conference on Requirements Engineering
(RE 2005), Washington, DC, USA, pp. 117–124. IEEE Computer Society, Los Alamitos
(2005)

7. Fuxman, A., Giorgini, P., Kolp, M., Mylopoulos, J.: Information systems as social structures.
In: Second International Conference on Formal Ontologies for Information Systems (FOIS-
2001), Ogunquit, USA (2001)

8. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal models.
In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, p. 167.
Springer, Heidelberg (2002)

9. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis and rea-
soning in the tropos methodology. Engineering Applications of Artifcial Intelligence 18/2
(2005)

10. Gordijn, J., Akkermans, H.: Value based requirements engineering: Exploring innovative e-
commerce idea. Requirements Engineering Journal 8(2), 114–134 (2003)

11. Grembergen, W., Saull, R.: Aligning business and information technology through the bal-
anced scorecard at a major canadian financial group: It’s status measured with an it bsc
maturity model. In: HICSS 2001: Proceedings of the 34th Annual Hawaii International Con-
ference on System Sciences (HICSS-34), Washington, DC, USA, vol. 8, p. 8061. IEEE
Computer Society, Los Alamitos (2001)

12. Kaplan, R., Norton, D.P.: The Balanced Scorecard: Translating Strategy into Action. Harvard
Business School Press, Massachusetts (1996)

13. Kaplan, R.S., Norton, D.P.: The strategy-focused organization. how balanced scorecard com-
panies thrive in the new business environment. Harvard Business School Press, Boston
(2001)

14. Niehaves, B., Stirna, J.: Participative enterprise modelling for balanced scorecard implemen-
tation. In: Ljunberg, J.A.M., et al. (eds.) The Fourteenth European Conference on Informa-
tion Systems, Goteborg, pp. 286–298 (2006)

15. Norton, D., Kaplan, R.: The balanced scorecard: measures that drive performance. Harvard
Business Review 70(1) (1992)

16. Porter, M.E.: What is strategy? Harvard Business Review 74(6), 61–78 (1996)
17. Rolland, C.: Reasoning with goals to engineer requirements. In: 5th International Conference

on Enterprise Information Systems, Angers, France, April 22-26 (2003)

www.manaraa.com

Using Fault Screeners for Software Error Detection�

Rui Abreu, Alberto González, Peter Zoeteweij, and Arjan J.C. van Gemund

Software Engineering Research Group, Delft University of Technology
P.O. Box 5031, NL-2600 GA Delft, The Netherlands

{r.f.abreu,a.gonzalezsanchez,p.zoeteweij}@tudelft.nl,
a.j.c.vangemund@tudelft.nl

Abstract. Fault screeners are simple software (or hardware) constructs that de-
tect variable value errors based on unary invariant checking. In this paper we
evaluate and compare the performance of three low-cost screeners (Bloom fil-
ter, bitmask, and range screener) that can be automatically integrated within a
program, and trained during the testing phase. While the Bloom filter has the ca-
pacity of retaining virtually all variable values associated with proper program
execution, this property comes with a much higher false positive rate per unit of
training effort, compared to the more simple range and bitmask screeners, that
compresses all value information in terms of a single lower and upper bound or
a bitmask, respectively. We present a novel analytic model that predicts the false
positive and false negative rate for ideal (i.e., screeners that store each individual
value during training) and simple (e.g., range and bitmask) screeners. We show
that the model agrees with our empirical findings. Furthermore, we describe an
application of all screeners, where the screener’s error detection output is used
as input to a fault localization process that provides automatic feedback on the
location of residual program defects during deployment in the field.

Keywords: Error detection, Program invariants, Analytic model, Fault
localization, Program spectra.

1 Introduction

In many domains such as consumer products the residual defect rate of software is con-
siderable, due to the trade-off between reliability on the one hand and development cost
and time-to-market on the other. Proper error detection is a critical factor in success-
fully recognizing, and coping with (recovering from) failures during the deployment
phase [25,19]. Even more than during testing at the development phase, errors may
otherwise go unnoticed, possibly resulting in catastrophic later on.

Error detection is typically implemented through tests (invariants) that usually trigger
some exception handling process. The invariants range from application-specific (e.g., a
user-programmed test to assert that two state variables in two different components are
in sync) to generic (e.g., a compiler-generated value range check). While application-
specific invariants cover many failures anticipated by the programmer and have a low

� This work has been carried out as part of the TRADER project under the responsibility of the
Embedded Systems Institute. This project is partially supported by the Netherlands Ministry
of Economic Affairs under the BSIK03021 program.

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 60–74, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.manaraa.com

Using Fault Screeners for Software Error Detection 61

false positive and false negative rate1, their (manual) integration within the code is typ-
ically a costly, and error-prone process. Despite the simplicity of generic invariants,
and their higher false positive and false negative rates, they can be automatically gener-
ated within the code, while their application-specific training can also be automatically
performed as integral part of the testing process during the development phase. Further-
more, generic invariants correlate to some extent with application-specific invariants.
Consequently, violation of the latter is typically preluded by violation of the former
type [8].

In view of the above, attractive properties, generic invariants, often dubbed fault
screeners, have long been subject of study in both the software and the hardware domain
(see Section 6). Examples include value screeners such as simple bitmask [14,27] and
range screeners [14,27], and more sophisticated screeners such as Bloom filters [14,27].
In most work the screeners are used for automatic fault detection [1] and fault localiza-
tion [14,26].

In all the above work, the performance of screeners is evaluated empirically. While
empirical information is invaluable, no analytical performance models are available that
explain why certain screeners outperform other screeners. For example, it is known that,
compared to a (sophisticated) Bloom filter, a simple range screener takes less effort to
train, but has worse detection performance (higher false negative rate). Up to now there
has been no modeling effort that supports these empirical findings.

In this paper we analytically and empirically investigate the performance of screen-
ers. In particular, we make the following contributions:

– We develop a simple, approximate, analytical performance model that predicts the
false positive and false negative rates in terms of the variable domain size and train-
ing effort. We derive a model for (ideal) screeners that store each individual value
during training, one for bitmask screeners that express all observed values in terms
of a bit array, and another model for range screeners that compress all training
information in terms of a single range interval.

– We evaluate the performance of Bloom filters, bitmask, and range screeners based
on instrumenting them within the Siemens benchmark suite, which comprises a
large set of program versions, of which a subset is seeded with faults. We show that
our empirical findings are in agreement with our model.

– As a typical application of screeners, we show how the Bloom filter, bitmask,
and range screeners are applied as input for automatic fault localization, namely
spectrum-based fault localization (SFL). It is shown that the resulting fault local-
ization accuracy is comparable to one that is traditionally achieved at the design
(testing) phase, namely for either Bloom filter or range screeners.

The significance of the latter result is that no costly, application-specific modeling is re-
quired for diagnostic purposes, paving the way for truly automatic program debugging.

The paper is organized as follows. In the next section we introduce the Bloom filter,
bitmask and range screeners. In Section 3 the experimental setup is described and the
empirical results are discussed. Section 4 presents our analytical performance model

1 An error flagged when there is none is called false positive, while missing an error is called
false negative.

www.manaraa.com

62 R. Abreu et al.

to explain the experimental results. The application of screeners as input for SFL is
discussed in Section 5. A comparison to related work appears in Section 6. Section 7
concludes the paper.

2 Fault Screeners

Program invariants, first introduced by Ernst et al. [8] with the purpose of support-
ing program evolution, are conditions that have to be met by the state of the pro-
gram for it to be correct. Many kinds of program invariants have been proposed in
the past [8,9,27]. In this paper, we focus on dynamic range invariants [27], bitmask in-
variants [14,27], and Bloom filter invariants [27]. Besides being generic, they require
minimal overhead (lending themselves well for application within resource-constrained
environments, such as embedded systems).

A bitmask invariant is composed of two fields: the first observed value (fst) and a
bitmask (msk) representing the activated bits (initially all bits are set to 1). Every time
a new value v is observed, it is checked against the currently valid msk according to:

violation = (v ⊕ fst) ∧ msk (1)

where ⊕ and ∧ are the bitwise xor and and operators respectively. If the violation is
non-zero, an invariant violation is reported. In error detection mode (operational phase)
an error is flagged. During training mode (development phase) the invariant is updated
according to:

msk := ¬(v ⊕ fst) ∧ msk (2)

Although bitmask invariants were used with success by Hangal and Lam [14], they
have limitations. First of all, their support for representing negative and floating point
numbers is limited. Finally, the upper bound representation of an observed number is
far from tight. To overcome these problems, we also consider range invariants, e.g.,
used by Racunas et al. in their hardware perturbation screener [27].

Range invariants are used to represent the (integer or real) bounds of a program
variable. Every time a new value v is observed, it is checked against the currently valid
lower bound l and upper bound u according to

violation = ¬(l < v < u) (3)

If v is outside the bounds, an error is flagged in error detection mode (deployment
phase), whereas in training mode (development phase) the range is extended according
to the assignment

l := min(l, v) (4)

u := max(l, v) (5)

Bloom filters [4] are a space-efficient probabilistic data structure used to check if an
element is a member of a set. This screener is stricter than the range screeners, as it is
basically a compact representation of a variable’s entire history.

www.manaraa.com

Using Fault Screeners for Software Error Detection 63

All variables share the same Bloom filter, which is essentially a bit array (64KB,
the size of the filter could be decreased by using a backup filter to prevent satura-
tion [27]). Each 32-bit value v and instruction address ia are merged into a single
32-bit number g:

g = (v ∗ 216) ∨ (0xFFFF ∧ ia) (6)

where ∨ and ∧ are bitwise operators, respectively. This number g is used as input to
two hash functions (h1 and h2), which index into the Bloom filter b. In detection mode
an error is flagged according to

violation = ¬(b[h1(g)] ∧ b[h2(g)]) (7)

During training mode, the outputs of the hash functions are used to update the Bloom
filter according to the assignment

b[h1(g)] := 1 (8)

b[h2(g)] := 1 (9)

3 Experiments

In this section the experimental setup is presented, namely the benchmark set of pro-
grams, the workflow of the experiments, and the evaluation metrics. Finally, the exper-
imental results are discussed.

3.1 Experimental Setup

Benchmark Set. In our study, we use a set of test programs known as the Siemens
set [16]. The Siemens set is composed of seven programs. Every single program has a
correct version and a set of faulty versions of the same program. The correct version
can be used as reference version. Each faulty version contains exactly one fault. Each
program also has a set of inputs that ensures full code coverage. Table 1 provides more
information about the programs in the package (for more information see [16]). Al-
though the Siemens set was not assembled with the purpose of testing fault diagnosis
and/or error detection techniques, it is typically used by the research community as the
set of programs to test their techniques.

Table 1. Set of programs used in the experiments

Program Faulty Versions LOC Test Cases Description
print tokens 7 539 4130 Lexical Analyzer
print tokens2 10 489 4115 Lexical Analyzer

replace 32 507 5542 Pattern Recognition
schedule 9 397 2650 Priority Scheduler
schedule2 10 299 2710 Priority Scheduler

tcas 41 174 1608 Altitude Separation
tot info 23 398 1052 Information Measure

www.manaraa.com

64 R. Abreu et al.

In total the Siemens set provides 132 programs. However, as no failures are observed
in two of these programs, namely version 9 of schedule2 and version 32 of replace,
they are discarded. Besides, we also discard versions 4 and 6 of print tokens be-
cause the faults in this versions are in global variables and the profiling tool used in our
experiments does not log the execution of these statements. In summary, we discarded
4 versions out of 132 provided by the suite, using 128 versions in our experiments.

Workflow of Experiments. Our approach to study the performance of fault screen-
ers as error detectors in the deployment phase comprises three stages. First, the target
program is instrumented to generate program spectra (used by the fault localization
technique, see Section 5) and to execute the invariants (see Figure 1). To prevent faulty
programs to corrupt the logged information, the program invariants and spectra them-
selves are located in an external component (“Screener”). The instrumentation process
is implemented as an optimization pass for the LLVM tool [20] in C++ (for details
on the instrumentation process see [11]). The program points screened are all memory
loads/stores, and function argument and return values.

Fig. 1. Workflow of experiments

Second, the program is run for those test cases for which the program passes (its out-
put equals that of the reference version), in which the screeners are operated in training
mode. The number of (correct) test cases used to train the screeners is of great impor-
tance to the performance of the error detectors at the deployment (detection) phase. In
the experiments this number is varied between 5% and 100% of all correct cases (134
and 2666 cases on average, respectively) in order to evaluate the effect of training.

Finally, we execute the program over all test cases (excluding the previous training
set), in which the screeners are executed in detection mode.

Error Detection Evaluation Metrics. We evaluate the error detection performance of
the fault screeners by comparing their output to the pass/fail outcome per program over
the entire benchmark set. The (“correct”) pass/fail information is obtained by comparing
the output of the faulty program with the reference program.

Let NP and NF be the size of the set of passed and failed runs, respectively, and let
Fp and Fn be the number of false positives and negatives, respectively. We measure the
false positive rate fp and the false negative rate fp according to

fp =
Fp

NP
(10)

fn =
Fn

NF
(11)

www.manaraa.com

Using Fault Screeners for Software Error Detection 65

3.2 Results

Figure 2 plots fp and fn in percents for bitmask (msk), range (rng), and Bloom fil-
ter (bloom) screeners for different percentages of (correct) test cases used to train the
screeners, when instrumenting all program points in the program under analysis. The
plots represent the average over all programs, which has negligible variance (between
0− 0.2% and 3− 5%, for fp and fn, respectively). From the figure, the following con-
clusions can be drawn for fp: the more test cases used to train the screeners, the lower
fp (as screeners evolve with the learning process). In addition, it can be seen that Bloom
filter screeners learn slower than the range screener, which in turn learn slower than bit-
mask screeners. Furthermore, for all screeners fn rapidly increases, meaning that even
after minimal training many errors are already tolerated. This is due to:

– limited detection capabilities: only either single upper/lower bounds or a compact
representation of the observed values are stored are screened, i.e., simple and invari-
ants, in contrast to the host of invariants conceivable, based on complex relation-
ships between multiple variables (typically found in application-specific invariants)

– program-specific properties: certain variables exhibit the same values for passed
and failed runs, see Section 4. Those cases lead to false negatives.

– limited training accuracy: although the plots indicate that the quantity of pass/fail
training input is sufficient, the quality of the input is inherently limited. In a number
of cases a (faulty) variable error does not result in a failure (i.e., a different output
than the correct reference program). Consequently, the screener is trained to accept
the error, thus limiting its detection sensitivity.

0%

20%

40%

60%

80%

100%

 5 10 20 30 40 50 60 70 80 90 100

Training %

msk fp
msk fn
rng fp
rng fn

bloom fp
bloom fn

Fig. 2. Fsalse positives and negatives on average

Due to its strictness, Bloom filter screeners have on the one hand lower fn than range
screeners. On the other, this strictness increases fp. In the next section we provide a
more theoretic explanation for the observed phenomena.

Because of their simplicity, the evaluated screeners entail minimal computational
overhead. On average, the 494 (0.40 cov1) program points screened introduced an

1 Coefficient of variance (standard deviation divided by mean).

www.manaraa.com

66 R. Abreu et al.

overhead of 14.2% (0.33% cov) for the range screener, and 46.2% (0.15% cov) was
measured for the Bloom filter screener (when all program variable loads/stores and
function argument/returns are screened).

4 Analytic Model

In this section we present our analytic screening performance model. First, we de-
rive some main properties that apply without considering the particular properties that
(simple) screeners exhibit. Next we present a performance model for the bitmask
screening. Finally, we focus on the range screener, which is a typical example of a
simple, yet powerful screener, and which is amongst the screeners evaluated.

4.1 Concepts and Definitions

Consider a particular program variable x. Let P denote the set of values x takes in all
NP passing runs, and let F denotes the set of values x takes in all NF failing runs.
Let T denote the set of values recorded during training. Let |P |, |F |, |T | denote the set
sizes, respectively. Screener performance can generally be analyzed by considering the
relationship between the three sets P, F , and T as depicted in Fig. 3. In the figure we
distinguish between five regions, numbered 1 through 5, all of which associate with
false positives (fp), false negatives (fn), true positives (tp), and true negatives (tn). For
example, values of x which are within P (i.e., OK values) but which are (still) outside
of the training set T , will trigger a false positive (region 1). Region 3 represents the fact
that certain values of x may occur in both passing runs, as well as failing runs, leading
to potential false negatives. Region 4 relates to the fact that for many simple screeners
the update due to training with a certain OK value (e.g., in region 2) may also lead to
acceptance of values that are exclusively associated with failed runs, leading to false
negatives (e.g., an upper bound 10, widened to 15 due to x = 15, while x = 13 is
associated with a failed run).

P F

T

2

tn tn/fn

3 4

fp tpfn

1 5

Fig. 3. Distribution of variable x

4.2 Ideal Screening

In the following we derive general properties of the evolution of the false positive rate
fp and the false negative rate fn as training progresses. For each new value of x in a
passing run the probability p that x represents a value that is not already trained equals

www.manaraa.com

Using Fault Screeners for Software Error Detection 67

p =
|P | − |T |

|P | = 1 − |T |
|P | (12)

Note that for ideal screeners region 4 does not exist. Hence T grows entirely within P .
Consequently, the expected growth of the training set is given by

tk − tk−1 = pk−1 (13)

where tk denotes the expected value of |T |, E[|T |], at training step k, and pk denotes
the probability p at step k. It follows that tk is given by the recurrence relation

tk = α · tk−1 + 1 (14)

where α = 1 − 1/|P |. The solution to this recurrence relation is given by

tk =
αk − 1
α − 1

(15)

Consequently

E[|T |] = |P | ·
(

1 − (1 − 1
|P |)

k

)
(16)

Thus the fraction of T within P initially increases linearly with k, approaching P in the
limit for k → ∞.

Since in detection mode the false positive rate fp equals p, from (12) it follows

fp = (1 − 1
|P |)

k (17)

Thus the false positive rate decreases with k, approaching a particular threshold after a
training effort k that is (approximately) proportional to |P |. As the false negative rate
is proportional to the part of T that intersects with F (region 3) it follows that fn is
proportional to the growth of T according to

fn = f ·
(

1 − (1 − 1
|P |)

k

)
(18)

where f denotes the fraction of P that intersects with F . Thus the false negative rate
increases with k, approaching f in the limit when T equals P . From the above it follows

fn = f · (1 − fp) (19)

4.3 Bitmask Screening

In the following we introduce the constraint that the entire value domain of a variable is
compressed in terms of a bitmask. Let msk be a bit array with a indices. Without loss
of generality, let pi = p be the probability that the bit in index i equals 0 after a value is
observed. The expected number H of indices set to 1 (aka Hamming weight) after that

www.manaraa.com

68 R. Abreu et al.

observation follows a binomial distribution, and amounts to E[H] = (1 − p) · a. Thus,
msk has the following expected number of 1’s after k observations

E[H]k = (1 − pk) · a (20)

Consequently,
E[|T |]k = 2(1−pk)·a (21)

Note that every time a bit is flipped in msk, the number of accepted values doubles.
From (12) it follows that

fp = 1 − 2(1−pk)·a

|P | (22)

Thus the false positive rate decreases exponentially with k, approaching a particular
threshold after a training effort k that is (approximately) proportional to |P |. The anal-
ysis of fn is similar to the previous section with the modification that for simple screen-
ers such as the bitmask screener the fraction f ′ of T that intersects with F is generally
greater than the fraction f for ideal screeners (regions 3 and 4, as explained earlier).
Thus,

fn = f ′ · (1 − fp) = f ′ · 2(1−pk)·a

|P | > f · 2(1−pk)·a

|P | (23)

4.4 Range Screening

In the following we introduce the constraint that the entire value domain of variable
x available for storage is compressed in terms of only one range, coded in terms of
two values l (lower bound) and u (upper bound). Despite the potential negative impact
on fp and fn we show that the training effort required for a particular performance is
independent of the entire value domain, unlike the two previous screeners.

After training with k values, the range screener bounds have evolved to

lk = min
i=1,...,k

xi (24)

uk = max
i=1,...,k

xi (25)

Since xi are samples of x, it follows that lk and uk are essentially the lowest and highest
order statistic [7], respectively, of the sequence of k variates taken from the (pseudo)
random variable x with a particular probability density function (pdf). The order statis-
tics interpretation allows a straightforward performance analysis when the pdf of x is
known. In the following we treat two cases.

Uniform Distribution. Without loss of generality, let x be distributed according to a
uniform pdf between 0 and r (e.g., a uniformly distributed index variable with some
upper bound r). From, e.g., [7] it follows that the expected values of lk and uk are given
by

E[lk] =
1

k + 1
· r (26)

E[uk] =
k

k + 1
· r (27)

www.manaraa.com

Using Fault Screeners for Software Error Detection 69

Consequently,

E[|T |] = E[uk] − E[lk] =
k − 1
k + 1

· r (28)

Since |P | = r, from (12) it follows (fp = p) that

fp = 1 − k − 1
k + 1

=
2

k + 1
(29)

The analysis of fn is similar to the previous section, thus

fn = f ′ · (1 − fp) = f ′ · k − 1
k + 1

> f · k − 1
k + 1

(30)

Normal Distribution. Let x be distributed according to a normal pdf with zero mean
and variance σ (many variables such as loop bounds are measured to have a near-normal
distribution over a series of runs with different input sets [10]). From, e.g., [12] it fol-
lows that the expected values of lk and uk are given by the approximation (asymptoti-
cally correct for large k)

E[lk] = σ ·
√

2 · log(0.4 · k) (31)

E[uk] = −σ ·
√

2 · log(0.4 · k) (32)

Consequently,

E[|T |] = E[uk] − E[lk] = 2 · σ ·
√

2 · log(0.4 · k) (33)

The false positive rate equals the fraction of the normal distribution (P) not covered by
T . In terms of the normal distribution’s cumulative density function (cdf) it follows

fp = 1 − erf
σ · √2 · log(0.4 · k)

σ · √2
(34)

which reduces to
fp = 1 − erf

√
log(0.4 · k) (35)

Note that, again, fp is independent of the variance of the distribution of x. For the false
negative rate it follows

fn = f ′ · (1 − fp) = f ′ · erf
√

log(0.4 · k) (36)

4.5 Discussion

Both the result for uniform and normal distributions show that the use of range screen-
ers implies that the false positive rate (and, similarly, the false negative rate) can be
optimized independent of the size of the value domain. Since the value domain of x can
be very large this means that range screeners require much less training than “ideal”
screeners to attain bounds that are close to the bounds of P . Rather than increasing

www.manaraa.com

70 R. Abreu et al.

one value at a time by “ideal” screeners, range screeners can “jump” to a much greater
range at a single training instance. The associated order statistics show that |T | ap-
proaches |P | regardless their absolute size. For limited domains such as in the case of
the uniform pdf the bounds grow very quickly. In the case of the normal pdf the bounds
grow less quickly. Nevertheless, according to the model a 1 percent false positive rate
can be attained for only a few thousand training runs (few hundred in the uniform case).
Although bitmask screeners are dependent on the size of variable x, they learn much
faster than range and “ideal” screeners. This is due to the fact that every time a bit is
flipped in the bitmask, the number of accepted values doubles.

The model is in good agreement with our empirical findings (see Figure 2). While
exhibiting better fn performance, the Bloom filter suffers from a less steep learning
curve (fp) compared to the range screener, which has a higher fp rate if compared to
the bitmask screener. Although it might seem that even the Bloom filter has acceptable
performance near the 100 percent mark, this is due to an artifact of the measurement
setup. For 100 percent training there are no passing runs available for the evaluation
(detection) phase, meaning that there will never be a (correct) value presented to the
screener that it has not already been seen during training. Consequently, for the 100
percent mark fp is zero by definition, which implies that in reality the Bloom filter
is g expected to exhibit still a non-zero false positive rate after 2666 test cases (in
agreement with the model). In contrast, for the range/bitmask screener it is clearly
seen that even for 1066 tests fp is already virtually zero (again, in agreement with the
model).

5 Fault Screening and SFL

In this section we evaluate the performance of the studied fault screeners as error detec-
tor input for automatic fault localization tools. Although many fault localization tools
exist [5,6,18,21,28,30], in this paper we use spectrum-based fault localization (SFL)
because it is known to be among the best techniques [18,21].

In SFL, program runs are captured in terms of a spectrum. A program spectrum [15]
can be seen as a projection of the execution trace that shows which parts (e.g., blocks,
statements, or even paths) of the program were active during its execution (a so-called
“hit spectrum”). In this paper we consider a program part to be a statement. Diagnosis
consists in identifying the part whose activation pattern resembles the occurrences of
errors in different executions. This degree of similarity is calculated using similarity
coefficients taken from data clustering techniques [17]. Amongst the best similarity
coefficients for SFL is the Ochiai coefficient [3,1,2]. The output of SFL is a ranked list
of parts (statements) in order of likelihood to be at fault.

Given that the output of SFL is a ranked list of statements in order of likelihood
to be at fault, we define quality of the diagnosis qd as 1 − (p/(N − 1)), where p is
the position of the faulty statement in the ranking, and N the total number of state-
ments, i.e., the number of statements that need not be inspected when following the
ranking in searching for the fault. If there are more statements with the same coeffi-
cient, p is then the average ranking position for all of them (see [1] for a more elaborate
definition).

www.manaraa.com

Using Fault Screeners for Software Error Detection 71

0%

20%

40%

60%

80%

100%

 10 20 30 40 50 60 70 80 90 100

D
ia

gn
os

tic
 q

ua
lit

y
q d

Training %

rng-Ochiai
msk-Ochiai

bloom-Ochiai
development-time

Fig. 4. Diagnostic quality qd on average

Fig. 5. Screener-SFL vs. reference-based SFL

Figure 4 plots qd for SFL using the three screeners versus the training percentage as
used in Figure 2. From the figure, we conclude that the bitmask screener is the worst
performing one. In general, the performance of bloom filter and range screeners is sim-
ilar. The higher fn of the range screener is compensated by its lower fp, compared to
the Bloom filter screener. The best qd, 81% for the range screener is obtained for 50%
training, whereas the Bloom filter screener has its best 85% performance for 100% (al-
though this is due to an artifact of the measurement setup as explained in the previous
section). From this, we can conclude that, despite its slower learning curve, the Bloom
filter screener can outperform the range screener if massive amounts of data are avail-
able for training (fp becomes acceptable). On the other hand, for those situations where
only a few test cases are available, it is better to use the range screener. Comparing
the screener-SFL performance with SFL at development-time (85% on average [2], see
Figure 5), we conclude that the use of screeners in an operational (deployment) context
yields comparable diagnostic accuracy to using pass/fail information available in the
testing phase. As shown in [1] this is due to the fact that the quantity of error informa-
tion compensates the limited quality.

Due to their small overhead ([1,3], see also Section 3.2), fault screeners and SFL are
attractive for being used as error detectors and fault localization, respectively.

www.manaraa.com

72 R. Abreu et al.

6 Related Work

Dynamic program invariants have been subject of study by many researchers for dif-
ferent purposes, such as program evolution [8,9,29], fault detection [27], and fault lo-
calization [14,26]. More recently, they have been used as error detection input for fault
localization techniques, namely SFL [1].

Daikon [9] is a dynamic and automatic invariant detector tool for several program-
ming languages, and built with the intention of supporting program evolution, by
helping programmers to understand the code. It stores program invariants for several
program points, such as call parameters, return values, and for relationships between
variables. Examples of stored invariants are constant, non-zero, range, relationships,
containment, and ordering. Besides, it can be extended with user-specified invariants.
Carrot [26] is a lightweight version of Daikon, that uses a smaller set of invariants
(equality, sum, and order). Carrot tries to use program invariants to pinpoint the faulty
locations directly. Similarly to our experiments, the Siemens set is also used to test
Carrot. Due to the negative results reported, it has been hypothesized that program in-
variants alone may not be suitable for debugging. DIDUCE [14] uses dynamic bitmask
invariants for pinpointing software bugs in Java programs. Essentially, it stores pro-
gram invariants for the same program points as in this paper. It was tested on four real
world applications yielding “useful” results. However, the error detected in the experi-
ments was caused by a variable whose value was constant throughout the training mode
and that changed in the deployment phase (hence, easy to detect using the bitmask
screener). In [27] several screeners are evaluated to detect hardware faults. Evaluated
screeners include dynamic ranges, bitmasks, TLB misses, and Bloom filters. The au-
thors concluded that bitmask screeners perform slightly better than range and Bloom
filter screeners. However, the (hardware) errors used to test the screeners constitute ran-
dom bit errors which, although ideal for bitmask screeners, hardly occur in program
variables. IODINE [13] is a framework for extracting dynamic invariants for hardware
designs. In has been shown that dynamic invariant detection can infer relevant and ac-
curate properties, such as request-acknowledge pairs and mutual exclusion between
signals.

To the best of our knowledge, none of the previous work has analytically modeled
the performance of the screeners, nor evaluated their use in an automatic debugging
context.

7 Conclusions and Future Work

In this paper we have analytically and empirically investigated the performance of
low-cost, generic program invariants (also known as “screeners”), namely range and
Bloom-filter invariants, in their capacity of error detectors. Empirical results show that
near-“ideal” screeners, of which the Bloom filter screener is an example, are slower
learners than range invariants, but have less false negatives. As major contribution,
we present a novel, approximate, analytical model to explain the fault screener per-
formance. The model shows that the training effort required by near-“ideal” screeners,

www.manaraa.com

Using Fault Screeners for Software Error Detection 73

such as Bloom filters, increases with the variable domain size, whereas simple screen-
ers, such as range screeners, only require constant training effort. Despite its simplic-
ity, the model is in total agreement with the empirical findings. Finally, we evaluated
the impact of using such error detectors within a fault localization approach aimed at
the deployment (operational) phase, rather than just the development phase. We ver-
ified that, despite the simplicity of the screeners (and therefore considerable rates of
false positives and/or negatives), the diagnostic performance of SFL is similar to the
development-time situation. This implies that fault diagnosis with an accuracy compa-
rable to that in the development phase can be attained at the deployment phase with no
additional programming effort or human intervention.

Future work includes the following. Although other screeners are more time-cons-
uming and program-specific, such as relationships between variables or components’
state machine-based program invariants [22], they may lead to better diagnostic per-
formance, and are therefore worth investigating. Finally, inspired by the fact that only
a limited number of (so-called collar) variables are primarily responsible for program
behavior [23,24], we also plan to study the impact of (judiciously) reducing the amount
of screened program points (overhead).

References

1. Abreu, R., González, A., Zoeteweij, P., van Gemund, A.J.C.: Automatic software fault local-
ization using generic program invariants. In: Proc. SAC 2008. ACM Press, New York (2008)

2. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: An evaluation of similarity coefficients for
software fault localization. In: Proc. PRDC 2006. IEEE CS, Los Alamitos (2006)

3. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the accuracy of spectrum-based fault lo-
calization. In: Proc. TAIC PART 2007. IEEE CS, Los Alamitos (2007)

4. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

5. Cleve, H., Zeller, A.: Locating causes of program failures. In: Proc. ICSE 2005. IEEE CS,
Los Alamitos (2005)

6. Dallmeier, V., Lindig, C., Zeller, A.: Lightweight defect localization for Java. In: Black, A.P.
(ed.) ECOOP 2005. LNCS, vol. 3586, pp. 528–550. Springer, Heidelberg (2005)

7. David, H.A.: Order Statistics. John Wiley & Sons, Chichester (1970)
8. Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically discovering likely program

invariants to support program evolution. In: Proc. ICSE 1999. IEEE CS, Los Alamitos (1999)
9. Ernst, M., Perkins, J., Guo, P., McCamant, S., Pacheco, C., Tschantz, M., Xiao, C.: The

Daikon system for dynamic detection of likely invariants. In: Science of Computer Program-
ming (2007)

10. Gautama, H., van Gemund, A.: Low-cost static performance prediction of parallel stochastic
task compositions. IEEE Trans. Parallel Distrib. Syst. 17(1), 78–91 (2006)

11. González, A.: Automatic error detection techniques based on dynamic invariants. Master’s
thesis, Delft University of Technology and Universidad de Valladolid, Delft (2007)

12. Gumbel, E.: Statistical theory of extreme values (main results). In: Sarhan, A., Greenberg,
B. (eds.) Contributions to Order Statistics. John Wiley & Sons, Chichester (1962)

13. Hangal, S., Chandra, N., Narayanan, S., Chakravorty, S.: IODINE: A tool to automatically
infer dynamic invariants for hardware designs. In: Proc. DAC 2005. ACM Press, New York
(2005)

www.manaraa.com

74 R. Abreu et al.

14. Hangal, S., Lam, M.: Tracking down software bugs using automatic anomaly detection. In:
Proc. ICSE 2002. IEEE CS, Los Alamitos (2002)

15. Harrold, M., Rothermel, G., Wu, R., Yi, L.: An empirical investigation of program spectra.
ACM SIGPLAN Notices 33(7) (1998)

16. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments of the effectiveness of
dataflow- and controlflow-based test adequacy criteria. In: Proc. ICSE 1994. IEEE CS, Los
Alamitos (1994)

17. Jain, A., Dubes, R.: Algorithms for clustering data. Prentice-Hall, Inc., Englewood Cliffs
(1988)

18. Jones, J., Harrold, M.: Empirical evaluation of the tarantula automatic fault-localization tech-
nique. In: Proc. ASE 2005. ACM Press, New York (2005)

19. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36 (2003)
20. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis &

transformation. In: Proc. CGO 2004. ACM Press, New York (2004)
21. Liu, C., Fei, L., Yan, X., Han, J., Midkiff, S.: Statistical debugging: A hypothesis testing-

based approach. IEEE TSE 32(10), 831–848 (2006)
22. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral models.

In: ICSE 2008. ACM Press, New York (2008)
23. Menzies, T., Owen, D., Richardson, J.: The strangest thing about software. Computer 40(1),

54–60 (2007)
24. Pattabiraman, K., Kalbarczyk, Z., Iyer, R.K.: Application-based metrics for strategic place-

ment of detectors. In: Proc. PRDC 2005. IEEE CS, Los Alamitos (2005)
25. Patterson, D., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J., Enriquez, P., Fox,

A., Kiciman, E., Merzbacher, M., Oppenheimer, D., Sastry, N., Tetzlaff, W., Traupman, J.,
Treuhaft, N.: Recovery Oriented Computing (ROC): Motivation, definition, techniques, and
case studies. Technical Report UCB/CSD-02-1175, U.C. Berkeley (2002)

26. Pytlik, B., Renieris, M., Krishnamurthi, S., Reiss, S.: Automated fault localization using
potential invariants. In: Proc. AADEBUG 2003. ACM Press, New York (2003)

27. Racunas, P., Constantinides, K., Manne, S., Mukherjee, S.: Perturbation-based fault screen-
ing. In: Proc. HPCA 2007. IEEE CS, Los Alamitos (2007)

28. Renieris, M., Reiss, S.: Fault localization with nearest neighbor queries. In: Proc. ASE 2003,
Montreal, Canada. IEEE CS, Los Alamitos (2003)

29. Yang, J., Evans, D.: Automatically inferring temporal properties for program evolution. In:
Proc. ISSRE 2004. IEEE CS, Los Alamitos (2004)

30. Zhang, X., He, H., Gupta, N., Gupta, R.: Experimental evaluation of using dynamic slices
for fault location. In: Proc. AADEBUG 2005. ACM Press, New York (2005)

www.manaraa.com

Language Support for Service Interactions in
Service-Oriented Architecture

Sven De Labey1,�, Jeroen Boydens2, and Eric Steegmans1

1 K.U. Leuven, Department of Computer Science
Celestijnenlaan 200A, B3000 Leuven, Belgium

2 KHBO Department of Industrial Engineering Science & Technology
Zeedijk 101, B8400 Oostende, Belgium

{svendl,eric}@cs.kuleuven.be, jeroen.boydens@khbo.be

Abstract. The Open Services Gateway initiative (OSGi) is a platform for run-
ning service-oriented Java applications. OSGi provides a central service reg-
istry to allow application components (so-called bundles) to share functionality.
From the viewpoint of programming language development, OSGi leaves a lot
of room for improvement. Its service query language, for instance, bypasses im-
portant compile-time guarantees and it works only for service metadata that never
changes during the lifetime of a service. A second problem is that the event notifi-
cation system requires programmers to write a considerable amount of boilerplate
logic for reacting to service events. This obfuscates the business logic, which in
turn decreases code comprehension and increases the odds for introducings bugs
when implementing client-service interactions.

This paper evaluates OSGi as a platform for programming client-service in-
teractions in Java. After focusing on problems that relate to OSGi’s integrated
service query language and its event notification system, we propose a solution
based on a programming language extension. We also show how this extension is
transformed to regular Java code so as to maintain interoperability with the OSGi
specification.

Keywords: Service-Oriented Architecture, Language Concepts.

1 Introduction

Object-Oriented programming languages such as Java are increasingly adopting the
paradigm of Service-Oriented Computing [1]. One of the most popular SOA adopters is
the Open Services Gateway initiative [2]. OSGi technology provides a service-oriented,
component-based environment and offers standardized ways to manage the software
lifecycle [3]. It subscribes to the publish-find-bind model by providing a central service
registry which is used by application components (so-called bundles) to publish their
services along with relevant metadata. These services can then be retrieved by other
bundles by means of an LDAP-based search mechanism. OSGi also provides a notifica-
tion system to signal lifecycle changes of services. This support for implicit invocation,

� Research funded by the Institute for the Promotion of Innovation through Science and Tech-
nology in Flanders (IWT-Vlaanderen).

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 75–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.manaraa.com

76 S. De Labey, J. Boydens, and E. Steegmans

where bundles are given a chance to react to events that are relevant for them is a key
feature of OSGi because service architectures are inherently dynamic and volatile.

But OSGI also imposes a lot of responsibilities on the programmer [4]. Its integrated
service query language, for instance, is very weak and bypasses compile-time guaran-
tees on the syntactic correctness of a query. Also, the benefits of the notification system
are overshadowed by the requirement to write a considerable amount of boilerplate
code, which bypasses compile-time guarantees in a similar way and which lacks sup-
port for advanced event notification methodologies, such as Event-Condition-Action
rules.

In this paper, we evaluate OSGi as a means for implementing client-service inter-
actions in Java-based service-oriented architectures. We identify a number of problems
and we show how these can be solved by introducing a language extension that (1)
increases the level of abstraction and (2) provides compile-time guarantees on the cor-
rectness of service queries and event definitions.

This paper is structured as follows. Section 2 provides a comprehensive review of
OSGi in the context of client-service interactions. Based on this evaluation, Sections
3 and 4 propose a language extension that aims at solving the problems of OSGi. The
implementation of this extension is described in Section 5. Related work is presented
in Section 6 and we conclude in Section 7.

2 Evaluation of Client-Service Interactions in OSGi

Section 2.1 first evaluates explicit client-service interactions, which occur when a client
directly invokes a method that is published by the public interface of the target service.
Section 2.2 then evaluates implicit interactions, which occur when a service reacts to
the notification of an event.

Fig. 1. Service registration and retrieval via the BundleContext

2.1 Explicit Client-Service Interactions

Explicitly invoking an operation from the public interface of a target service requires
a client to find the service first. OSGi follows the publish-find-bind methodology of
Service-Oriented Computing to enable service retrieval via the OSGi Service Registry.
This section evaluates (1) service registration and (2) service retrieval.

www.manaraa.com

Language Support for Service Interactions in Service-Oriented Architecture 77

Service Registration. A bundle uses the central service registry to register the services
it offers to other bundles. Registration is done through the bundle’s BundleContext
reference, which is injected into the bundle activator class by the OSGi runtime system.
The service object can be added to the registry along with service-specific metadata
represented as a dictionary containing key-value pairs. This is depicted conceptually
in steps 1–2 of Figure 1, where an OfficeComponent registers a printer of type P
with metadata pairs describing (1) the printer throughput (ppm) and whether it supports
color printing (color). The code for realizing this registration is shown in Listing 1.
Lines 7-10 show how the printer and its metadata are added to the service registry.

Evaluation. The major problem is that OSGi’s metadata system bypasses compile-time
guarantees on the soundness of key-value pairs. Erroneous pairs such as(ppm,true)are
accepted by the Java compiler because keys and values are statically typed asString, as
shown on lines 3–4 in Listing 1. Moreover, clients must know the names of the properties
that were added during registration (such as “ppm”) as well as the domain of possible
values for each property, but there is no standardized way to retrieve this information.

1 //--1-- Specify metadata
2 Properties metadata = new Properties();
3 metadata.put("ppm","35");
4 metadata.put("color","true");
5 //--2-- Register Service and Metadata
6 ServiceRegistration registration =
7 context.registerService(//use of the BundleContext reference
8 PrinterServiceImpl.class.getName(),
9 printer,

10 metadata);|

Listing 1. Registering services and metadata in OSGi

Service Retrieval. Bundles use service queries to find services that were registered by
other bundles. A service query is written as an LDAP expression containing (1) the ser-
vice type in order to indicate what kind of service the bundle needs (e.g. PrinterSer-
vice) and (2) a boolean expression constraining the values of the service’s metadata.
Steps 3–4 in Figure 1 depict the retrieval of a color printer, P, with the constraint that it
must print at least 25 pages per minute. The variables used in the LDAP query (ppm and
color) refer to metadata entered by the service provider. Listing 2 shows how such a
retrieval is realized by means of an LDAP expression containing the service type (line

1 public PrinterService searchPrinterService(){
2 ServiceReference[] printerReferences;
3 try {
4 String servType="(objectClass="+PrinterService.class.getName()+")";
5 String serviceFilter="(&"+servType+"(&(ppm>=25)(color=true)))";
6 references[] = context.getServiceReferences(null,serviceFilter);
7 return (PrinterService)context.getService(references[0]);
8 }
9 catch(InvalidSyntaxException ise){ return null; }

10 }|

Listing 2. Retrieving services from the OSGi Service Registry

www.manaraa.com

78 S. De Labey, J. Boydens, and E. Steegmans

4) and a boolean expression (line 5). Again, the BundleContext is used to shield
the requesting bundle from complex interactions with OSGi framework classes.

Evaluation. Since we are mainly interested in reviewing the expressive power of the
LDAP query mechanism, we consider three kinds of service properties: (1) static, (2)
dynamic and (3) derived properties:

– Static Service Properties. OSGi’s LDAP-based query mechanism is ideally suited
for static properties, as these properties never change during the lifetime of the ser-
vice. Metadata such as pages per minute can be registered along with a Printer-
Service instance because this information is assumed not to change during the
lifetime of the printer.

– Dynamic Service Properties. Properties that do change when a service is opera-
tional, introduce major problems. The queue of a PrinterService, for instance,
grows and shrinks as jobs arrive and get processed. Obviously, these properties can-
not be added during registration, so OSGi’s metadata system does not support them
and neither does its LDAP query language.

– Derived Service Properties. A third class of characteristics comprises informa-
tion that depends on input provided by the client bundle. The cost for printing a
file, for instance, may be calculated by combining the file’s page count with the
PrinterService’s cost for printing one page. But the OSGi metadata system
does not support this. Thus, clients cannot specify constraints on information that
is derived from the metadata of a service.

OSGi also lacks a statically typed, comprehensible query language (as shown on lines
4–5 in Listing 2). Similar to the service registration process where syntactically in-
correct metadata could be added, it is possible to write inconsistent or syntactically
incorrect queries. These errors will only be detected at runtime when the query is
parsed. Programmers using LDAP-based queries must therefore expect to catch an
InvalidSyntaxException every time they want to retrieve services (cfr line 9
in Listing 2). This is in sharp contrast with regular method invocations, about which
the Java compiler provides strong guarantees about their syntactical correctness and the
absence of typing errors.

In summary, the OSGi query mechanism is a dynamically typed query language that
only deals with static service metadata. What we need, however, is a statically typed
query language that is able to deal with dynamic, volatile service properties.

Fig. 2. Event Notification in OSGi

www.manaraa.com

Language Support for Service Interactions in Service-Oriented Architecture 79

2.2 Implicit Client-Service Interactions

Next to explicit client-service interactions, OSGi also supports implicit interactions,
which occur when a service reacts to the notification of an event. This section focuses
on how bundles can register event handlers that allow them to react to events sent by
other services, bundles, or by the OSGi framework itself. Two roles are important: the
event handler and the subject. Interactions between both are mediated by the OSGi
EventAdmin service:

– Event Handler. An EventHandler is a class that reacts to events. Its handle-
Event(Event ev) method is called by the EventAdmin when events occur.
Handlers are registered as services following the approach explained in Section 2.1
(see steps 1–2 in Fig. 2). Registration can be done along with metadata so as to filter
the set of events that will be signalled to the handler. Listing 3 shows how a topic
(line 3) and a filter (line 4) are added to a metadata dictionary (lines 5–7) which
is added to the ItemTracker event handler that is registered as a service in the
OSGi registry (line 8). A topic can be seen as a channel on which related events
are published; the filter expression constrains the values of event-specific metadata,
such as type and price.

1 public void start(BundleContext bundleContext){
2 ItemTracker tracker = new ItemTracker(); |/*implements|EventHandler|*/|
3 String topic = "org/osgi/service/Item";
4 String filter = "(&(type=sold)(price>1000))";
5 Dictionary dict = new Hashtable();
6 dict.put(EventConstants.EVENT_TOPICS,topic);
7 dict.put(EventConstants.EVENT_FILTER,filter);
8 bundleContext.registerService("EventHandler.class",tracker,dict);
9 }|

Listing 3. Registration of a constrained EventHandler

– Subject. A bundle that publishes events is called an event source or a subject.
Events typically contain metadata to finetune the notification phase. The Item
event, for instance, contains information about the type of the event, and the
price of the Item. Listing 4 shows how this metadata is added to the event (lines
2–5) and Listing 3 already indicated how event handlers may constrain these meta-
data properties. To publish events, subjects use their BundleContext reference
to search for the OSGi EventAdmin service (shown in steps 3–5 in
Figure 2 and on lines 7–10 in Listing 4). The EventAdmin matches the metadata
of the event with the constraints (topic and filter) of all the registered event han-
dlers and notifies those handlers for which the matching process succeeds (steps
6–7 in Figure 2). This decoupled way of notifying handlers, in which a central
EventAdmin is responsible for the technical wiring between subjects and their
handlers, is called the Whiteboard pattern [5].

www.manaraa.com

80 S. De Labey, J. Boydens, and E. Steegmans

1 public void start(BundleContext bundleContext){
2 Dictionary metadata = new Hashtable(); /*| Create Event |*/
3 metadata.add("price","1500");
4 metadata.add("type","sold");
5 Event event = new Event("org/osgi/service/Item",metadata);
6

7 String adminName=EventAdmin.class.getName(); /*| Send Event |*/
8 ServiceReference sr = bundleContext.getServiceReference(adminName);
9 EventAdmin admin = (EventAdmin)bundleContext.getService(sr);

10 admin.sendEvent(event);
11 }|

Listing 4. Creating and sending events using the EventAdmin

Evaluation. We focus on three problems concerning implicit service interactions: (1)
the lack of compile-time guarantees, (2) the limited expressiveness of event definitions
and (3) the lack of support for complex event processing.

– Limited Compile-time Guarantees. Similar to the lack of compile-time guaran-
tees for explicit service interactions, OSGi fails to provide important guarantees on
the soundness of (1) topics and filters of event handlers, as shown on lines 3–4 in
Listing 3 and (2) on the metadata of the events and their topic, as shown on lines
3–5 in Listing 4.

– Limited Expressiveness. Again, LDAP constraints can only refer to service prop-
erties that never change during the lifetime of the service, i.e. static service prop-
erties. This is not a problem for the metadata of the Event instance, as events
are typically shortlived. But it is a major problem for the handlers: they cannot in-
troduce dynamic or derived propertes in their topics and filters. This inability to
expressively filter events increases the complexity of event handlers and it leads to
a large amount of unsolicited notifications.

– Lack of Support for Complex Event Processing. Bundles may be interested in
patterns among events, rather than events themselves, thus requiring a mecha-
nism for correlating event occurrences. The problem with OSGi’s event notification
mechanism is that the EventAdmin automatically forwards event occurrences
from the subject to the handlers, without providing support for complex event de-
tection. This puts the burden of creating data structures and algorithms for detecting
composite events on the programmer, thus decreasing the level of abstraction and
significantly reducing the readability of the code due to the interweaving of techni-
cal detection code with the business logic.

The evaluation presented here drives our research for language extensions, which we
introduce in the next two sections. We first introduce constructs for explicit service
interactions [6] (Section 3) and then discuss concepts for implicit service interactions
(Section 4) before explaining how this extension is transformed to Java so as to remain
compatible with the OSGi specification (Section 5).

3 Abstractions for Explicit Service Interactions

ServiceJ introduces (1) type qualifiers to identify variables depending on services, as
discussed in Section 3.1 and (2) declarative operations for fine-tuning the set of assign-
able services to such a service variable, as discussed in Section 3.2.

www.manaraa.com

Language Support for Service Interactions in Service-Oriented Architecture 81

3.1 Support for Basic Service Interactions

Type qualifiers are used to distinguish variables holding service references from variables
pointing to local objects. This differentiation allows the ServiceJ-to-Java transformer to
inject additional operations for transparently dealing with the typical challenges intro-
duced by service architectures (this is explained in detail in Section 5). Currently, two
type qualifiers are defined in ServiceJ:

Fig. 3. The pool qualifier triggers transparent service lookup and service injection

1. The pool qualifier. This type qualifier is used to indicate that a variable depends
on a service published by another bundle. In Figure 3, for instance, the variable ps
of type PrinterService is decorated with the pool qualifier to indicate that
the variable depends on a service that must be provided by another bundle. The ad-
vantage of explicitly stating this dependency is that our compiler can inject code for
service retrieval, thus increasing the level of abstraction. The pool qualifier causes
the transformer (see Section 5 for details) to transparently inject operations for (1)
service retrieval, (2) non-deterministic service binding, and (3) service failover.

2. The sequence qualifier. The pool qualifier is the most basic qualifier for service
interactions in that it selects any service from the registry that has a compatible type.
Sometimes, however, bundles may prefer some service implementations above oth-
ers, based on service-specific metadata. In that case, a deterministic service selec-
tion procedure is required. The sequence qualifier, which is a subqualifier of
the pool qualifier, is used to decorate these variables. The sequencequalifier is
used exclusively in conjunction with the orderby operation, which is explained
in Section 3.2.

Example. Figure 3 depicts how ps, a variable of type PrinterService, is deco-
rated with the pool qualifier. It shows how the programmer is exonerated from
implementing interactions with the OSGi middleware in order to obtain service refer-
ences. Programmers only need to declare their service variables and invoke operations
on them. Initialization is now the responsibility of the ServiceJ middleware (steps 1–2
in Figure 3), which interacts via the BundleContext with the OSGi service registry
(steps 3–4) before non-deterministically injecting a service reference in ps (step 5) and
invoking the print operation (step 6). Should the injected service fail during this inter-
action, then ServiceJ automatically injects another service into ps before transparently
reinvoking the operation.

www.manaraa.com

82 S. De Labey, J. Boydens, and E. Steegmans

3.2 Support for Constrained Service Interactions

Similar to the LDAP-based query language provided by OSGi, ServiceJ incorporates
specialized support for fine-tuning service selection. In contrast with OSGi, however,
these operations are now fully integrated within the programming languages in the form
of declarative operations. In ServiceJ, queries no longer refer to untyped metadata, but
instead, they directly relate to the operations that are exported by the service’s inter-
face. In stead of using an untyped property such as “ppm”, for instance, queries in
ServiceJ refer to a public inspector method such as getPPM(), which is exported by
the PrinterService interface. This provides better compile-time guarantees on the
syntactical and conceptual correctness of queries. Currently, two declarative operations
are defined for fine-tuning service selection:

– The where operation. This operation is used to constrain a set of candidate ser-
vices by means of a boolean expression and thus replaces OSGi’s untyped query
language. The service query from Listing 2, for instance, can be translated using
the where operation as follows:

This system not only fosters compile-time guarantees, but it is also more expressive
than LDAP expressions. Our query language can take into account the most up-
to-date information of a service since it refers directly to public methods of the
service’s API, thus allowing programmers to impose constraints on dynamic and
derived service properties. An additional benefit is that the where operation is
combined with the pool qualifier, implying that these constrained sets of candidate
services still provide transparent service selection, injection and fail-over.

– The orderby operation. This operation is used to sort a set of candidate services
according to the preferences of a user. In the PrinterService example, a pro-
grammer can use the orderby operation to select the printer that minimizes the
cost for printing a given file, again referring to public API methods, as shown in the
sample code above.

Note that this query necessitates the use of the sequence qualifier because a
deterministic service selection policy is requested. Detailed information about the
use of type qualifiers and their associated service selection strategies can be found
in our previous paper [7].

www.manaraa.com

Language Support for Service Interactions in Service-Oriented Architecture 83

4 Abstractions for Implicit Service Interactions

This section introduces concepts that solve the problems identified in Section 2.2 by
(1) providing compile-time guarantees for both subjects and their event handlers, (2)
improving the expressiveness of event constraints and (3) increasing the level of ab-
straction so as to exonerate programmers from implementing boilerplate code. We look
at atomic events (Section 4.1) and show how type-safe support for composite event no-
tification is integrated in ServiceJ (Section 4.2).

1 public interface Item{
2 |/* events that can be published by all Item services */|
3 public event Sold{
4 private final double price;
5 public Sold(double price){ this.price=price; }
6 public double getPrice(){ return this.price; }
7 }
8 public event Bought{ |/* event body omitted */| }
9

10 |/* regular Java interfaces methods */|
11 void sell();
12 }|

Listing 5. Event definitions are directly integrated into the service interface

4.1 Language-Integrated Atomic Event Notification

OSGi offers no standardized way for event handlers to find out what events a subject
signals. This drawback is overcome by integrating events as inner types in the public ser-
vice interface. Listing 5 shows how a Sold event is integrated into the Item interface.
Subjects implementing thisItem interface can publishItem.Sold events. Each event
class inherits from a common base class, Event, that offers general-purpose methods
such as getSource() to retrieve the subject and getOccurrenceTime() to re-
turn the event’s publication time.

1 public class Flight implements Item{
2 public void sell(){
3 //sell item at <price>
4 new Item.Sold(price).publish();
5 }
6 }|

Listing 6. The publish() operation makes event publication transparent

Event Publication. Subjects create new instances of the Item.Sold event and then
call the publish() operation of Event to start the notification process. This ap-
proach completely hides interactions with the BundleContext and the EventAdmin,
as shown on line 4 of Listing 6. All technical details are left to our preprocessing tool
and our underlying notification middleware (see Section 5).

Reacting to Events. Rather than filtering events using LDAP constraints, our language
allows event handlers to use event filters based on (1) the subject that sends them and
(2) the event type and its characteristics. The language constructs are shown in Listing

www.manaraa.com

84 S. De Labey, J. Boydens, and E. Steegmans

7 on lines 1–7, but due to space constraints, we explain them by means of the example
on lines 9–16:

– Subject. The event handler uses the observe() clause to indicate what type of
events it needs to track. Line 10 in Listing 7 indicates that the handler is willing
to listen to events sent by subjects of type Item. These subjects are further con-
strained by means of a boolean where expression. In our example, the item must
be contained in a list, as required by the boolean expression, this.getStored-
Items().contains(item), on line 10.

– Event. The observed subject may notify various types of events, so the on()
clause is used to specify what types of events are of interest to the handler. A
second where clause may be attached to the on clause to further constrain that
type of events. Line 11 in Listing 7 shows an event handler soliciting Item.Sold
events with a selling price of more than 3000. When a matching event is found,
the sale variable is automatically bound to that event instance, allowing the han-
dler to retrieve event-specific data using traditional inspector methods, such as
sale.getPrice() on line 12.

1 class Monitor{ // -- Language Concepts, Definition
2 observe(|subject type|) where(|subject constraint|){
3 on(|event expression|) where(|event constraint|){
4 |reaction|
5 }
6 }
7 }
8

9 class Monitor{ // -- Language Concepts, Example
10 observe(Item item) where(this.getStoredItems().contains(item)){
11 on(Item.Sold sale) where(sale.getPrice()>3000){
12 Logger.archive("We sold an item for " + sale.getPrice());
13 }
14 on(...) //other events can be handled here.
15 }
16 }|

Listing 7. Observing subjects and conditionally reacting to events

4.2 Language-Integrated Composite Event Notification

Composite events are structural combinations of atomic events and/or other composite
events. OSGi does not support composition because it lacks a language for defining
composite events and because the EventAdmin currently does not have a detection
algorithm. This section provides an overview of event composition operators and our
strategy for composite event handling in ServiceJ.

We define a sublanguage, embedded in our DSL, that allows to define event compo-
sitions in OSGi. This is a sublanguage because its expressions may only appear inside
the on clause, which was introduced in Section 4.1. Keeping the event composition
sublanguage completely independent of Java avoids pollution of the Java grammar def-
inition and allows both languages to evolve independently of each other. We focus on
the following composition operators:

www.manaraa.com

Language Support for Service Interactions in Service-Oriented Architecture 85

Operator Example Occurs when. . .
&& A && B when both A and B have occurred
|| A || E when A or E has been notified
-> A -> C when the notification of A is followed by a notification of C
[i] C[3] when an event of type C has occurred 3 times
! !E(A->D) when an event E is not detected during the detection of A->D

Fig. 4. Composite events are defined as structural combinations of other events

Listing 8 shows how a composite eventProfit is fired when an Item.Bought event
is followed by an Item.Sold event. This composition is specified in the on clause on
line 10. Listing 8 contains two new language constructs:

1. Constrained Unification Variables. These are variables that are matched with
events that were signalled by observed subjects. Line 7 in Listing 8, for instance,
declares a unification variable buy of type Item.Bought. This CUV is matched
with Item.Bought instances signalled by the subject itself (as required by
observe(this) on line 6). Note also that this variable is constrained: it con-
tains a where clause that imposes additional constraints on events. Unification
only succeeds if three rules are satisfied: (1) the subject matches the observe
clause, (2) the event type matches the CUV type and (3) the composite event satis-
fies the where clause on line 10.

1 public event Profit{
2 public double amount;
3 public Profit(double amt){ this.amount=amt; }
4 }
5

6 observe(this){
7 Item.Bought buy where buy.getPrice()>3000; |/* CUV */|
8 Item.Sold sale;
9

10 on(buy->sale) where(buy.getPrice() < sale.getPrice()){ |/* definition */|
11 new Profit(sale.getPrice()-buy.getPrice()).publish();
12 }
13 }|

Listing 8. Composite events are defined in the on clause on line 10

2. Composite Event Specification. The specification of the composite event is iso-
lated in the on clause, which is the only place where our event composition sub-
language is supported. Such a specification relates to the CUVs, buy and sale,
declared on lines 7–8 in Listing 8. If these variables are matched by event oc-
currences according to the specification buy->sale, and if the accompanying

www.manaraa.com

86 S. De Labey, J. Boydens, and E. Steegmans

where clause on line 10 is satisfied at the moment of the detection, then the reac-
tive part (line 11) is executed. This triggers the creation and publication of a new
Profit event. Thus, the reactive part of the on clause can be used for two pur-
poses: (1) for reacting to a composite event, but also (2) for signalling new events.

5 Implementation

Figure 5 shows how ServiceJ code is read by a lexer and a parser ➀ so as to create a Ser-
viceJ metamodel instance ➁. The ServiceJ metamodel is an extension of Jnome [8], our
Java metamodel, to which we added constructs that represent type qualifiers (pool and
sequence), declarative operations (where and orderby), and constrainable obser-
vation structures (observe and on). The metamodel representation of the source code
is fed to the ServiceJ-to-Java transformer ➂, which is responsible for building a Java
metamodel instance that replaces the ServiceJ constructs of the ServiceJ metamodel in-
stance with equivalent Java constructs. Service interactions are transformed as follows:

– Explicit Interactions. When a method invocation on a pool variable is detected
in the metamodel instance representing the source code, the transformer injects
code for service retrieval. First, it inserts interactions with the OSGi service registry
via a BundleContext reference so as to select a proper candidate set ➃. Then,
it selects the service that satisfies the where clause, if any, and optimizes this
selection based on the orderby clause. Finally, it makes the service interaction
more robust by injecting service fail-over code.

– Implicit Interactions. Composite event patterns are transformed back to atomic
event subscriptions so as to remain compatible with the existing OSGi EventAdmin.
The constraints found in the where expressions accompanying the observe and
on clauses are transformed to classes following the Command pattern [9]. These
commands are then organized as filters following the Pipes and Filters design pattern
[10]. The result of this process is that each atomic subscription is decorated with a
chain of filters, represented as commands. The transformer then builds a directed
event graph based on the composite event definition found in the on clause, using
the atomic subscriptions as nodes of that graph.

Fig. 5. Transformation of ServiceJ code to compiled Java code

www.manaraa.com

Language Support for Service Interactions in Service-Oriented Architecture 87

Fig. 6. Transformation of an event definition according to the Pipes and Filters design pattern

After the equivalent Java metamodel has been built by the ServiceJ-to-Java transformer,
a simple code writer ➄ transforms the Java metamodel instance to .java files ➅, which
can be compiled by the standard Java compiler, thus finishing the compilation process
➆. All in all, this is an extensive process, but it is important to note that it acts as a black
box consuming ServiceJ source files and producing compiled Java classes. Intervention
of developers or deployers is never required during the compilation process.

Transforming Implicit Interactions, Example. Figure 6 shows an event handler that
signals a composite event Profit when an Item.Bought event is followed by an
Item.Sold event. The OSGi EventAdmin distributes event notifications, that are
sent to a series of connected filters. The first filter is a subject filter ➀. As required
by observe(this), this subject filter only allows events sent by the subject it-
self to pass through. Assuming that four types of events can be signalled (Moved,
Bought, Sold, and Lost), the event filter ➁ then blocks Moved and Lost events
since these are not solicited in order to detect the composite event. Events of type Sold
are also blocked at this point because the buy->sale specification is not interested
in Item.Sold: Figure 6 shows that the Sold gate is opened only when a Bought
event is signalled. Events that satisfy the type constraint are passed to the third filter
➂, which checks the where clause of the constrained unification variables buy and
sale. Events that pass this third filter are injected in the event graph ➃ that represents
the composite event definition buy->sale. This graph is traversed as events are sig-
nalled, and when it reaches a sink, the next filter is activated. This filter represents the
where expression ➄ that further constrains the on clause. If that condition is satisfied,
then the EventAdmin is called to signal the Profit event.

www.manaraa.com

88 S. De Labey, J. Boydens, and E. Steegmans

6 Related Work

Jini [11] is a close competitor to OSGi, since it also attempts to bring Service-Oriented
Computing to the world of object-oriented programming [12]. One drawback of Jini
with respect to OSGi, is that Jini’s query mechanism is much weaker than OSGi’s
LDAP-based queries. Jini relies on entry objects representing the exact value that a
property must have, whereas OSGi allows programmers to use operators such as “<”
and “>=” to specify ranges of values, rather than a single value. Moreover, Jini does not
install an event notification architecture, but relies on a leasing system instead. Clients
retrieving a Jini service are given a lease representing the time they are allowed to use
the service. Leases must be renewed temporarily, which creates additional programming
overhead.

Cervantes and Hall observed that OSGi does not provide any support for managing
service dependencies apart from the basic event notification system in [13] and [14].
They propose to improve dependency management based on instance descriptors. Such
instance descriptors are XML files describing how a bundle depends on external ser-
vices. A <requires> tag is introduced to specify the service type, the cardinality of
the dependency, and the filter condition. Programmers may also define the bind and
unbind methods that should be called when a service is to be bound or unbound. One
problem with this approach is that the information to be specified bypasses compile-
time guarantees. Also, the filter condition is now isolated in an XML file, but it is
still an LDAP-based query string, which lacks support for dynamic and derived service
properties. Moreover, instance descriptors create a strong dependency between a Java
file and an XML file, and they divide important decisions concerning the business logic
between these two files, which reduces the comprehensibility of the code.

The Observer pattern [9] is the pattern on which the Whiteboard pattern [5] is based.
Bosch [15] proposes LayOM, a layered object model that integrates events directly into a
programming language. Layers intercept method calls so as to enable pre- and postpro-
cessing, such as event notification. The main goal of LayOM is to increase the visibility
of events. Other problems, such as the monolithic handleEventmethod are not solved.
Moreover, events are modelled as strings, similar to OSGi event metadata, thus reduc-
ing compile-time guarantees. Programmers are also responsible for wiring handlers to
subjects, thus reducing the level of abstraction. The VetoableChangeListen- er

and the PropertyChangeListener interfaces from the JavaBeans package [16] have
similar problems.

Hedin introduces language support for events based on attribute extension [17]. Pro-
grammers can make their subjects and events more visible and the compiler can verify
whether event notification is implemented correctly, thus increasing both traceability
and verifiability. This approach resembles ours although its expressiveness is limited:
event occurrences cannot be constrained or combined, whereas our approach supports
(1) subject constraints, (2) constrained unification variables and (3) constrained event
composition.

Riehle introduces a programming model where state changes and dependencies are
modelled as first class objects in the programming language [18]. The resulting sys-
tem is highy flexible and can be used for dependency management between objects
in an object-oriented programming language. But no compiler can guarantee whether

www.manaraa.com

Language Support for Service Interactions in Service-Oriented Architecture 89

these dependencies are wired correctly. Programmers are also required to implement a
large amount of classes. The Observer-Conditioned-Observable pattern [19] has similar
problems.

Our approach of introducing type qualifiers and qualifier inference is based on the
approach followed in Javari [20]. We have proven the type soundness of this language
extension in a way similar to the Java extension presented in [21]. For more information
about the formal development of ServiceJ, we refer to [22] and [7].

7 Conclusions

The Open Services Gateway Initiative is a successful attempt to bridge the gap between
object-oriented programming and service-oriented computing, but a number of chal-
lenges remain unsolved. In this paper, we have focused on problems stemming from
explicit and implicit client-service interactions, where the lack of compile-time guaran-
tees and the limited expressiveness of the service query and event constraint language
remain the most important drawbacks.

To solve these problems, we propose an integration of ServiceJ language concepts
into the OSGi programming model. Type qualifiers and declarative operations enable
programmers to invoke services that satisfy their requirements (using thewhere clause)
and that most closely approximate their expectations (using theorderby clause). More-
over, specialized constructs such as the observe and on clause allow them to define
conditional reactions to complex event patterns. In summary, our concepts increase the
level of abstraction, at the same time fostering the compile-time guarantees of a stat-
ically typed programming lannguage that remains fully compatible with the existing
OSGi specification.

References

1. Papazoglou, M.: Service Oriented Computing: Concepts, Characteristics and Directions. In:
Proceedings of the 4th International Conference on Web Information Systems Engineering
(2003)

2. OSGi: Open Services Gateway Initiative Specification v4.0.1 (2006),
http://www.osgi.org

3. Marples, D., Kriens, P.: The open service gateway initiative: An introductory overview. IEEE
Communications Magazine 39 (2001)

4. Hall, R., Cervantes, H.: Challenges in building service-oriented applications for OSGi. IEEE
Communications Magazine 42, 144–149 (2004)

5. OSGi: Listeners considered harmful: The whiteboard pattern (2004),
www.osgi.org/documents/osgi_technology/

6. De Labey, S., Steegmans, E.: Typed Abstractions for Client-Service Interactions in OSGi. In:
Proceedings of the Third International Conference on the Evaluation of New Approaches to
Software Engineering (2008)

7. De Labey, S., Steegmans, E.: ServiceJ. A Type System Extension for Programming Web
Service Interactions. In: Proceedings of the Fifth International Conference on Web Services,
ICWS 2007 (2007)

8. van Dooren, M., Vanderkimpen, K., De Labey, S.: The Jnome and Chameleon Metamodels
for OOP (2007)

http://www.osgi.org
www.osgi.org/documents/osgi_technology/

www.manaraa.com

90 S. De Labey, J. Boydens, and E. Steegmans

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable
object-oriented software. Addison-Wesley Professional, Reading (1995)

10. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions (2003)

11. Sun: The Jini Architecture Specification and API Archive – (2005),
http://www.jini.org

12. Huang, Y., Walker, D.: Extensions to Web Service Techniques for Integrating Jini into a
Service-Oriented Architecture for the Grid. In: Proceedings of the International Conference
on Computational Science (2003)

13. Hall, R., Cervantes, H.: Gravity: supporting dynamically available services in client-side
applications. SIGSOFT Software Engineering Notes 28, 379–382 (2003)

14. Cervantes, H., Hall, R.: Automating Service Dependency Management in a Service-Oriented
Component Model. In: Proceedings of the 6th Workshop on Foundations of Software Engi-
neering and Component Based Software Engineering, pp. 379–382 (2003)

15. Bosch, J.: Design patterns as language constructs. Journal of Object-Oriented Program-
ming 11, 18–32 (1998)

16. Java SE 6.0: VetoableChangeListener API (1998),
http://java.sun.com/javase/6/

17. Hedin, G.: Language Support for Design Patterns Using Attribute Extension. In: Bosch,
J., Mitchell, S. (eds.) ECOOP 1997 Workshops. LNCS, vol. 1357, pp. 137–140. Springer,
Heidelberg (1998)

18. Riehle, D.: The Event Notification Pattern–Integrating Implicit Invocation with Object-
Orientation. Theor. Pract. Object Syst. 2 (1996)

19. Lyon, D.A., Weiman, C.F.R.: Observer-conditioned-observable design pattern. Journal of
Object Technology 6 (2007)

20. Tschantz, M.S., Ernst, M.D.: Javari: Adding reference immutability to Java. In: Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA 2005), San Diego,
CA, USA, pp. 211–230 (2005)

21. Pratikakis, P., Spacco, J., Hicks, M.: Transparent Proxies for Java Futures. In: OOPSLA
2004: Proceedings of the 19th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pp. 206–223. ACM, New York (2004)

22. De Labey, S., van Dooren, M., Steegmans, E.: ServiceJ: Service-Oriented Programming in
Java. Technical Report KULeuven, CW451 (June 2006)

http://www.jini.org
http://java.sun.com/javase/6/

www.manaraa.com

Part II
Evaluation of Novel Approaches

to Software Engineering 2009

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 93–106, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Automating Component Selection and Building Flexible
Composites for Service-Based Applications

Jacky Estublier, Idrissa A. Dieng, and Eric Simon

Grenoble University - LIG, 220 rue de la Chimie, 38041 Grenoble, BP53 Cedex 9, France
{Jacky.Estublier,Idrissa.Dieng,Eric.Simon}@imag.fr

Abstract. Service Oriented Computing allows defining applications in which
components (services) can be available and selected very late during the devel-
opment process or even “discovered” at execution time. In this context, it is no
longer possible to describe an application as a composite entity containing all
its components; we need to perform component selection all along the applica-
tion life-cycle, including execution. It requires describing an application at least
partially by its requirements and goals, leaving room for delaying selection; the
development system, and the run-time must ensure that the current component
selection satisfies, at all time, the application description.

In this paper, we propose a concept of composite addressing the needs of
advanced and flexible service-based applications, automating component selec-
tion and building composites satisfying the application description and enforc-
ing minimality, completeness and consistency properties. We also propose tools
and environment supporting these concepts and mechanisms in the different
phases of the application life-cycle.

Keywords: Service oriented computing, Service selection, Service composi-
tion, Composite services, Software engineering environments.

1 Introduction

Service Oriented Computing (SOC) [13] like its predecessor, Component Based
Software engineering (CBSE), allows defining an application by composing (assem-
bling) a set of software elements named services or components and it relies on a
clear separation between interface (service) and implementation (component) that
increases their decoupling. But SOC emphasizes the fact that services (implementa-
tions or running instances):

• may be already available and provided by third parties,
• can appear or disappear at any time,
• may be available locally, on the net or elsewhere,
• their selection can be performed at any time including at execution,
• different implementations or instances of the “same” service may be simultane-

ously used in the same application,
• the same service can be used simultaneously by different applications.

www.manaraa.com

94 J. Estublier, I.A. Dieng, and E. Simon

SOC increases thus the flexibility in the selection of required services which consti-
tute the software application. These characteristics enable SOC to be well suitable to
new kind of software applications like those managing captors, sensors and actuators.

This context does not fit the usual component based technology, which implicitly,
hypothesizes a static structure of the application, with a single component implemen-
tation and instance per service, known before hand, not shared and so on. It does not
mean that it is not possible to develop, with traditional technology, software applica-
tions with more relaxed hypothesis, like the one mentioned above, but in this case the
designers and developers are left alone with complex and low-level technology, with-
out any tools and methods to help them; and development turns out to be more a
hacking nightmare than software engineering. To a lesser degree this also applies to
service-based applications due to the current lack of support tools.

In traditional Software engineering approaches, an application is often described as
a composite entity; but depending on the life-cycle phases, the composite elements
and their relationships are of different nature. For example, at design time, the appli-
cation can be described in terms of coarse grain functional elements with constraints
and characteristics; while at deployment time, it can be a set of packaged binaries
with dependencies. The “usual” composite concept fits mostly the development phase
with elements being components and relationships between these components. This
concept of composite is unsatisfactory for at least two reasons:

• It is too rigid to accommodate for the flexibility required by advanced applications.
• It is a low-level implementation view of the application.

Different kinds of composites have been proposed so far, adapted to different needs,
different technologies and/or different contexts. Orchestration and choreography [14],
[15], as well as ADL (Architecture Description Language) and configurations are
different kinds of composite. For example, orchestration has been proposed to solve
some issues found in service-based applications, with the hypothesis that services
(most often web services) can be discovered at execution, that services do not have
dependencies, and that the structure of the application is statically defined (the work-
flow model).

Service-based technology is becoming widespread, and an increasing number of
applications applying this technology are under development. Despite this success,
developing service-based applications, today, is a challenging task. Designers and
developers require high level concepts, mechanisms, tools and Software engineering
environments which natively support the characteristics required by advanced appli-
cations. Our main objective is to facilitate the realization of such advanced service-
based software applications. In this work, we propose a concept of composite that
addresses the needs of the advanced service-based applications, proposing technical
concepts and mechanisms, tools and environment allowing designing, developing and
executing applications which require high levels of flexibility and dynamism.

This paper is structured as follows: In Section 2, we briefly introduce our SAM /
CADSE approach. Then in Section 3, we propose a way to define and manage the
concept of composite addressing several needs of service-based applications. In
Section 4, we present our composition environment and its associated runtime for
service composites execution. Section 5 highlights related work. Finally, we present
our conclusion and future work in Section 6.

www.manaraa.com

 Automating Component Selection and Building Flexible Composites 95

2 The SAM / CADSE Approach

2.1 The Approach

In “pure” Service Oriented Architecture (SOA) like web services [1], there are not
explicit dependencies and the orchestration model is a static architectural description.
In dynamic service frameworks like OSGi [11], there is no explicit architectural de-
scription; it implies a dynamic behavior in which the framework is in charge to re-
solve dynamically the service dependencies; but conversely the application is not
explicitly defined, it has no architecture; no explicit structure. There is a conflict be-
tween making explicit the application structure and content; and providing the appli-
cation a large degree of dynamism.

It is interesting to mention that this conflict also exists between the early design
phase when only the purpose, constraints and gross structure are defined, and the
implementation phase that (usually) requires knowing the exact structure and content
of the application.

To solve this conflict, we propose to see a software project as a succession of
phases which purpose is to gradually select, adapt and develop components until the
structure and content of an application is fully defined and complete. These phases are
either performed by humans, before execution, or by machines at execution. Of
course, the machine can only perform selections (as opposed to develop code). But
the components automatically selected must satisfy the application needs which re-
quires making explicit the application goal, purpose and constraints and the availabil-
ity of one or more component repository.

Our solution relies on two systems: SAM (Service Abstract Machine) [5] a service
framework for executing the service-based application, and a set of CADSEs (Com-
puter Aided Domain Specific Engineering Environments) [4] in which are performed
the Software engineering activities. The approach makes the hypothesis that each
software engineering activity receives a composite as input, and produces a composite
(the same or another one) as output. The output composite represents the same appli-
cation as provided as input, but more precisely. In the same way, SAM receives a
composite in input; it executes those parts that are defined, and complete those that
are not fully defined, dynamically selecting the missing services.

Therefore our approach relies on a composite concept which can describe the ap-
plication in abstract terms, through the properties and constraints it must satisfy, and
which can describe that same application in terms of services and connections, as
understood by the underlying service platform(s) e.g. OSGi or Web services. We
believe that there is a continuum between these two extremes; each point being repre-
sented by a composite. All these composites and environments share the same basic
SAM core metamodel, presented bellow in Section 2.2.

2.2 SAM Core

The goal of Service Abstract Machine (SAM) is to dynamically delegate the execu-
tion performed in SAM toward real service platforms, like OSGi, J2EE or Web ser-
vices. Its basic metamodel, called SAM core therefore subsumes the metamodels
supported by the current service platforms.

www.manaraa.com

96 J. Estublier, I.A. Dieng, and E. Simon

A composite, during execution, is expressed in terms of the concepts exposed by
SAM core; but composites also represent the application during the early phases of
the life-cycle; SAM core is the metamodel shared by all composites, both in the Soft-
ware engineering activities and at execution; for that reason it must be abstract
enough and independent from specific platforms and technologies.

The central concept is Service. But service, in SAM core is an abstraction contain-
ing a Java interface along with its properties (a set of attribute/values pairs) and con-
straints (a set of predicates). Its real subclasses are Specification, Implementation and
Instance, seen as different materializations of the concept of service. Specifications
are services indicating, through relationships requires, their dependencies toward
other specifications. Despite being a rather abstract concept (it does not include any
implementation, platform or technical concern), it is possible to define a structural
composite only in terms of service specifications, as well as semantic composites in
term of constraints expressing the characteristics (functional or non functional) re-
quired from the services that will be used. Still, the system is capable to check com-
pleteness (no specification is missing), and consistency (all constraints are valid) on
abstract composites, making it relevant for the early phases.

An implementation represents a code snippet which is said to provide one or more
specifications. Conversely, a specification may be provided by a number of imple-
mentations. The provides relationship has a strong semantics: the implementation
object inherits all the properties values, relationships and interfaces of its specifica-
tions and it must implement (in the Java sense) the interfaces associated with its
specifications. In particular, if specification A requires specification B, all A’s imple-
mentations will require B. An implementation can add dependencies, through
relationship requires, toward other specifications. It is important to mention that, in
contrast to most systems, an implementation cannot express dependencies toward
other implementations.

Instances are run-time entities corresponding to the execution of an implementa-
tion. An instance inherits all the properties and relationships of its associated imple-
mentation. Fig. 1 illustrates the concepts of our SOA model:

Specification
0..n

0..n

0..n

requires

0..n
InstanceImplementation

0..n 0..n0..n 0..n

requires

1..n 0..n1..n 0..n

provides

0..n1 0..n1

Property

 Interface

Contraints Service

0..n0..n

11

0..n0..n

Fig. 1. SAM Core Metamodel

2.3 An Example

Developers use our CADSE environment to develop services that are conforming to
the previous SAM Core metamodel. These services are available in the SAM reposi-
tory. Suppose the SAM repository has the content shown in Fig. 2. In this repository,

www.manaraa.com

 Automating Component Selection and Building Flexible Composites 97

MediaPlayerImpl is an implementation which integrates the functionalities of both a
media renderer and a controller; therefore it provides MediaPlayer specification. The
Log specification has two implementations namely LogImpl_1 and LogImpl_2.
LogImpl_1 requires a DB (a database) and Security (for secure logging). DivX is an
implementation that provides Codec specification, and that has a property “Quality =
loss”. Codec has property Unique=false which means that an application may use
more than one Codec implementation simultaneously. Unique is a predefined attribute
whose semantic is known by the system, “Unique=true” is the default value.
Shared=true|false (e.g. property of LogImpl_2) is another predefined attribute ex-
pressing the fact that an implementation or an instance can be shared by different
applications (false is the default value).

provides

Service Specification

Service Implementation

requires
MediaServer

BrokerMediaServer
MediaServerADELE

Log

Protocol = UPnP
Trace = true
Kind = UPnP_Bridge

MediaPlayer

MediaPlayerImpl Codec

LogImpl_1

LogImpl_2

DB

HSQLDB

MySQL

Execution = disc

MPEG

DivX

Quality = loss

Security

Unique = false

MSImpl

BMSOptimized

Protocol = DPWS
Trace = false

Trace = false
Protocol = UPnP

Trace = false
Oracle

Execution = in_memory

Execution = disc

Shared = false

Protocol = UPnP

Fig. 2. A SAM Repository

The MediaPlayer specification requires MediaServer specification which means
that all its implementations (e.g. MediaPlayerImpl) also require MediaServer specifi-
cation. From a service (e.g. BrokerMediaServer) we can navigate its relationships to
obtain for example the service(s) it requires (Log) or its available implementations
(LogImpl_1 and LogImpl_2) following the provides relationship.

Services may have constraints which, like in OCL, are predicates. In contrast with
OCL, these constraints can be associated both on types and on service objects (i.e.
Specifications, Implementations and Instances). The language allows both navigating
over relationships and defining LDAP search filters as defined in [6]. For example,
LogImpl_1 implementation may declare that it requires an in_memory DB. This con-
straint can be expressed as follows:

Self.requires(name=DB)..provides (execution = in_memory);

Self denotes the entity context on which the constraint is associated (LogImpl_1).
Self.requires denotes the set of entities required by Self ({DB, Security}); (name =
DB) select the elements of the set satisfying the expression (DB), ..provides is a re-
verse navigation which returns all elements that provide DB ({Oracle, MySQL,
HSQLDB}); finally the expression returns the set {HSQLDB} since it is the only DB
implementation with property (execution= in_memory). An expression returning at
least an element is considered true. The constraint means that from the point of view
of the object origin of the constraint (LogImpl_1), DB has a single valid implementa-
tion: HSQLDB. The BrokerMediaServer implementation may declare that it requires
MediaServer implementations that are UPnP, but not a bridge:

www.manaraa.com

98 J. Estublier, I.A. Dieng, and E. Simon

Self.requires(name=MediaServer)..provides
 (&(kind!=UPnP_Bridge)(protocol=UPnP));

These previous constraints must be respected by all applications that use services
defining them. If the constraint follows a single relationship type, it expresses which
relationships are valid. When the relationship is created, the constraint is evaluated for
that relationship, if false the relationship cannot be created. For example, if we want
that Codec implementations cannot have more dependencies than Codec itself, we can
set the constraint:

equals(Self.requires, Self..provides.requires);

In this example, Self denotes the Codec specification that defines the constraint.
Self..provides denotes the set of implementations which provide it (MPEG and DivX).
This constraint is relevant for all implementations providing Codec. Therefore, such
constraints enforce some repository integrity.

Let us introduce our Media Player Application (MPA) example that we use there-
after in this paper. In our system, each MPA to be built is a composite which consists
of a media renderer (which consumes a flux, for example a video stream), a media
server (which provides flux found in a storage), and a controller that interacts with the
customer and connects servers and renderers. Each MPA must fulfill a set of charac-
teristics (properties and constraints) to be consistent. Its components (services) should
be chosen among those available in the SAM repository if available, if not they have
to be developed, but in any case these services must be compatible and deliver the
desired characteristics of the composite.

3 Composite

Suppose that we want to build an UPnP-based home appliance MPA such that, when
running in a particular house, it is capable of discovering the media servers available
in that house and to provide MediaPlayer functionalities. Defining that MPA in the
traditional way, as a composite which gives the full list of components, is inconven-
ient, or even impossible for a number of reasons:

• Some components may not exist or not be known (yet) and
• there is no guaranty of composite’s completeness, consistency and optimality

properties.

Creating a complex composite on real cases, is not only a time consuming and error
prone task; but it may be simply impossible when components are missing (they must
be developed like the Security service in Fig.2) or when components are selected in a
later phase, or even discovered during execution (like MediaServers and Codecs). Our
goal is to propose a way to build and manage composites that avoid the above pitfalls.
Such composites are rather demanding; indeed they require the following properties:
• Completeness control. A composite must be capable of being explicitly incom-

plete; this is the case when components will be developed, when design choices
have not made or when the components cannot be known before execution time.
The composite must tell what is missing and why.

www.manaraa.com

 Automating Component Selection and Building Flexible Composites 99

• Consistency control. The composite must be able to detect and report inconsisten-
cies and constraints violation.

• Automation and optimality. The system should be capable to compute an optimal
and consistent list of components, satisfying the composite requirements and con-
straints, but also the degree of completeness required.

• Evolution. Incomplete composite must be such that they can be incrementally
completed.

The following sections present the concepts and mechanisms for composite
management.

3.1 Static Composite Definition

In our system, we define a composite as an extension of the SAM core presented above.
The extension presented in Fig. 3 is only one of the different SAM Core extensions;
indeed other simpler composite concepts have also been defined and implemented.

Interface

Property

Constraint

Service
PID

11

0..n0..n

0..n0..n

Characteristics Wire

Implementation
1 11

wires
1

Instance0..n

1

0..n

1
Specification

0..n

0..n

0..n

requires

0..n
0..n

0..n

0..n

0..n

requires

1..n

0..n

1..n

0..n

provides

Composite

state

0..n0..n

containsImpl

delayImpl

refines

0..n0..n
0..n0..n

containsSpec

delaySpec

Fig. 3. Composite Metamodel

As shown in Fig. 1 a SAM composite is a service implementation that can contains
specifications (containsSpec relationship), implementations (atomics or composites;
containsImpl relationship) and instances. Classically, a SAM composite can be de-
fined by the list of its service components (specifications and/or implementations)
setting explicitly the containsSpec and containsImpl relationships.

Being an implementation, a composite is not necessarily self-contained; it may
have requires relationships toward other services. Similarly, it is not necessarily com-
plete. As explained above, a composite must be capable of being incomplete by giv-
ing explicitly the delayed choices of components. Thus, a delaySpec or delayImpl
relationships toward an entity E express the fact that the selection process should not
follow the E dependencies. Delayed service selections can be carried out at any later
time for example during development, at deployment or at execution; the strategy is
up to the user.

www.manaraa.com

100 J. Estublier, I.A. Dieng, and E. Simon

3.2 Automatic Composite Building

Selecting manually the components of a composite, and creating explicitly the associ-
ated relationships is tedious and error prone since this manual process does not guar-
anty minimality (all components are useful), completeness (all required components
are present) nor consistency (constraints are all valid). To simplify the process of
defining a composite and to enforce the properties of completeness, consistency and
minimality, we need an automatic composite construction mechanism. Thus, we need
a language in which it is possible to specify the required characteristics of the com-
posite to build, and an interpreter, which analyses the composite description and se-
lects, in the repository, the components that together constitute a composite satisfying
the description, complete and consistent.

Therefore, a SAM composite can also be defined by its goal i.e. by its characteris-
tics, properties and constraints. We use a language to describe the intended properties
and constraints of composites. To create a composite, the designer first defines the
Specification(s) it provides, and then, optionally, imposes some choices explicitly
creating relationships indicating the Specifications it requires, the Specifications or
Implementations it contains and those it delays. Then the designer expresses the ex-
pected composite properties; our system performs the rest of the job. For example, to
build our UPnP-based home appliance MPA, one could first create a provides rela-
tionship to MediaPlayer, a delaySpec relationship to Codec, and a containsImpl rela-
tionship to MPEG as in Fig. 4:

Fig. 4. Composite initial MPA definition

Then we can declare the intended characteristics of the MPA as follows:

• We want to create a MPA that uses UPnP as protocol:
Select Implementation (Protocol=UPnP);

• The MPA to build must provides a trace of the executed actions:
Optional Implementation (Trace=true);

• The MPA should foster service sharing whenever possible.
Select Implementation (Shared=true);

This language is an extension of the constraint language, in which Self can be re-
placed by any set, including a complete type extension, like Implementation meaning
all actual implementations found during the selection process. In our example, traces
are preferred but not required. Since the system is weakly typed, an expression is
ignored if no element (in the selection set) defines the attribute; if only one element
defines the attribute with the good value, it is selected. The first sentence means that
we must select an implementation with protocol=UPnP for those Specifications for

www.manaraa.com

 Automating Component Selection and Building Flexible Composites 101

which at least one Implementation defines the protocol attribute; in our example, this
selection applies only to MediaServer.

 These expressions are interpreted when computing which are the required services
and selecting the implementations and instances that fulfil (1) the intended composite
constraints, and (2) all the constraints expressed by the already selected components.
For instance, if we select the LogImpl_1 implementation then we will necessarily
select HSQLDB since it is the only DB that satisfies the LogImpl_1 constraints.

Based on the description of a composite i.e. its initial relationships and its con-
straints, an interpreter computes and selects the required services that satisfy the com-
posite characteristics. The interpreter “simply” starts from the specification provided
by the composite (e.g. MediaPlayer in our MPA), and follows the requires relation-
ships to obtain all required specifications. It also follows the requires relationships of
its contained services (containsSpec and containsImpl relationships). For each specifi-
cation found (except those delayed and those explicitly required by the composite
itself), it tries to select one or more implementations satisfying all the constraints
associated with the services already selected and the selection expressions defined by
the composite itself. For each selected implementation the interpreter iterates the
above steps to found other required services. For instance, from the repository in
Fig. 2 and the selection expressions declared by the MPA, the interpreter builds the
following composite Fig. 5:

Fig. 5. A configuration of the MPA composite

For the MediaPlayer specification, the interpreter selected its unique implementa-
tion MediaPlayerImpl but MediaPlayerImpl requires a MediaServer, therefore Bro-
kerMediaServer is selected since it is the only MediaServer implementation satisfying
the composite selection (Protocol=UPnP). In turn BrokerMediaServer being selected,
a Log service is required, and LogImpl_1 is selected, because LogImpl_2 does not
satisfy the composite constraint (Shared=true); and consequently HSQLDB (because
of the LogImpl_1 constraint) and security because of the requires relationship. Unfor-
tunately Security has no available (or no convenient) implementation; the state of the
composite is “incomplete” and this specification is added in the MPA composite
through the containsSpec relationship. Codec being delayed, the system does not try
to select any of its implementations; at run-time, depending on the discovered Medi-
aServers, the required Codecs will be installed. Since the Codec implementations
cannot have other dependencies (because of the Codec constraint), there is no risk, at
execution, to depend on an unexpected service. Composite dynamic execution behav-
iour will not be discussed in this paper.

www.manaraa.com

102 J. Estublier, I.A. Dieng, and E. Simon

Our system guarantees minimality (nothing is useless), completeness (except for
explicit delays) and consistency since all constraints and selection expressions are
satisfied. But we no not guaranty optimality because the system may fail to find the
“best” solution or even a solution when one does exist. Indeed, during the selection
process, if a specification with (unique= true) has more than one satisfactory imple-
mentations, the system selects one of them arbitrarily. It may turn out to be a bad
choice if the selected one sets a constraint that will later conflict with another compo-
nent constraint. The solution consists in backtracking and trying all the possibilities,
which turns out to be too expensive in real cases.

3.3 Composite Contextual Characteristics

SAM composite extends SAM Core defining new concepts (e.g. composite), new
relationships (e.g. contains, delay); but any individual composite can also extend the
existing services with properties that are only relevant for the composite at hand.
These relationships and properties are called contextual characteristics (see Fig. 3).

For example, wire is a contextual relationship; it means that two implementations
are directly linked but for a given composite point of view only; this is not true in
general. We may wish to add property to some implementations such that constant
values, parameters or configuration information which are those required in a given
composite only, like bufferSize, localPath and so on. Implementations, along with
their contextual properties are called components in SCA [12]. Contextual character-
istics may apply to implementations, in order to create instances with the right initial
values, as in SCA, but also to specifications, when specific implementation can be
generated out of some parameters. More generally, contextual characteristics, includ-
ing constraints, apply to any delayed service, when the selection must be performed in
the scope of the current composite, and with the properties only relevant in that scope.
This is fundamental when selections are delayed until execution.

4 SAM Composite System: Tools, Environment and Runtime

The process of undertaking a software application has a rather complex life-cycle
consisting of several phases like software specification and design, development of
the software elements (components), developing and performing a series of unit tests,
deploying these elements, composing the application, software execution and so on.
In each phase, several stakeholders handle a set of concepts for achieving the related
software engineering activities. These concepts may be very different depending on
the abstraction level and the task at hand. Stakeholders need therefore assistance and
software engineering support to facilitate and automate theirs activities. For “each”
phase, we propose to use a CADSE (Computer Aided Domain Specific Engineering
Environment) dedicated to that phase. We see a software application project as a
succession of phases which purpose is to gradually develop new components, select
or adapt existing ones that constitute the full and consistent software. We try to iden-
tify the link between these phases in order to automate the phase’s transitions, using
the concept of composite. In this paper, we present only our environment and tools for
service composition and its associated runtime for executing and managing service

www.manaraa.com

 Automating Component Selection and Building Flexible Composites 103

composites. The following sections describe the main properties of our tools and
environment, and the composite runtime.

4.1 Composite Designing Environment

The environment we propose for designing and computing a composite service is a set
of Eclipse features and plug-ins generated by our CADSE technology [4]. CADSE is
a model-driven approach in which designers and developers interact only with models
views, editors and wizards, and not directly with the Eclipse IDE artifacts. The Com-
position CADSE generates the associated IDE artifacts and source code from these
models. Thus, our environment allows specifying the composition at a high level of
abstraction. It is also based on the separation of concerns idea: the concepts and as-
pects relevant for a class of stakeholders are gathered through a set of specific views,
for instance those allowing defining service specifications, implementations or com-
posites. Screenshot (Fig. 6) illustrates these views and describes the definition, prop-
erties and constraints of a service (specification, implementation or composite).

Fig. 6. A screenshot of our CADSE composition

The Environment integrates several tools and editors allowing for example:

• defining the intended application through the constraints and properties required
from the services that will be part of that application;

• validating service constraints and showing errors and/or warnings messages. The
system verify the syntax during constraint edition, if the name or attributes
(properties) of services used in an expression exist and/or are correct or not;

• performing automatic component (service) selection satisfying the composite
characteristics (requirements and constraints) in order to compute and build
automatically a consistent configuration (list of components) of the composite;

• delaying (or not) some component selection and evaluating the validity of the
new composite (its selected components);

• ….

COMPOSITE CONSTRAINTS VIEW

IMPLEMENTATION VIEW COMPOSITE VIEW

www.manaraa.com

104 J. Estublier, I.A. Dieng, and E. Simon

Our CADSE Composition environment is extensible to support the addition of new
concepts, features or functionalities. Easy extensibility, maintenance and evolution
are one of its essential properties. It allows enforcing completeness and consistency
properties of computed composites.

4.2 Composite Runtime

The SAM system provides a Composite runtime support for executing and managing
composite services. This runtime platform receives as input a composite description
as produced by the composite CADSE and performs the needed actions in order to
execute that composite enforcing, at each time, the satisfaction of its description (its
constraints and requirements). Our composite runtime executes the parts (services) of
a composite that are defined and completes those that are not fully defined by dy-
namically selecting the missing services, if they are available and if they fulfill the
composite characteristics.

The composite runtime gradually and incrementally transforms the composite de-
scription until it contains only service instances connected by wires satisfying the
constraints. To do so, depending on

• the current execution context (the running services), and
• the implementations available in the currently reachable repositories, and
• the currently defined implementations (in the composite description), and
• the composite constraints and requirements, and
• the already selected services constraints and requirements.

The composite runtime creates wires relationships linking two service implementa-
tions, establishes containsSpec or containsImpl relationships specifying the selected
services, sets attributes like complete or delayed to make explicit the composite state
(it is complete or not, delayed or not and so on). We use the same constraints lan-
guage, selection algorithm and tools in the CADSE Composition environment (design
phase) and in the Composite runtime (at execution time). The following figure illus-
trates our system from design to execution of a composite:

CADSE SAM Core CADSE Composite
Extends

Repository

SAM services

Provides Uses & provides

SAM Composite
Runtime

Real services in existing SOA platforms
like OSGi or Axis Web services

Deploys

Reads

Service reification

Extends
SAM CORE

Runtime

Software Engineering environments SAM Runtimes

Execution delegation

Fig. 7. Our system architecture

5 Related Work

We can classify the approaches and languages for service composition as orchestra-
tion, structural and semantic [8], [3], [10].

www.manaraa.com

 Automating Component Selection and Building Flexible Composites 105

Orchestration [14] is a recent trend fuelled by web services for which de facto
standard is Business Process Execution Language for Web Services (WS-BPEL) [9].
Structural composition defines the application in terms of service component linked
by dependency relationships. Service Component Architecture (SCA) specification
[12] is a structural SOA composition model [14]. Most efforts to automate service
composition are performed in the web semantic community. The hypothesis here is
that services do not have dependencies, and that specifications include a semantic
description using ontology languages such as OWL (Ontology Web Language) or
WSML (Web Service Modeling Language). The goal is to find an orchestration that
satisfies the composite semantic description (OWL-S [16] or WSMO [17]).

Automaton of service selection has been addressed in many research works focus-
ing on quality-of-service (QoS) criteria like reliability or response time. [7] propose a
QoS based service selection and discuss about the optimisation of this selection using
heuristic approaches. [2] propose an approach for dynamic service composite and
reduce the dynamic composition to a constraints (ontology based) satisfaction
problem. In most of these systems, QoS requirements are specified at the overall ap-
plication level. Therefore, it becomes unclear how to derive the QoS goals from par-
ticipating services [18]. In our approach, service properties and requirements can be
specified both on the individual services that will participate in a given composition
and on the composites themselves.

6 Conclusions and Future Work

SOC represents the logical evolution we are witnessing in software engineering: in-
creasing the decoupling between specifications (interfaces) and implementations,
increasing the flexibility in the selection of implementations fitting specifications,
delaying as much as possible the selection including the execution time, allowing
multiples implementations and instances of the same service to pertain to the same
application, and finally allowing some services to be shared between different appli-
cations during execution. Building a complex (service-based) application in this con-
text is very challenging.

In the traditional way, an application is defined in the early phases by a number of
documents and models in which the purpose, constraint and architecture of the applica-
tion are defined; but in the later phases of the application life-cycle an application is
specified as a full list of its components (being services or not), often called a composite
(or configuration). Building the composite manually is tedious and error prone when
components are developed independently and have conflicting requirements. It becomes
virtually impossible when some selections are to be done very late in the life-cycle.

In this paper, we propose to extend the concept of composite in order to represent
faithfully the application along the different life-cycle phases, from design to execution.
To that end, the composite must contain a high level description of the application, in
terms of properties and constraints it must satisfy, and on the other hand in terms of
components, bundles and run-time properties. We also propose a full-fledged set of
tools, environments and runtime for designing, computing from a goal (the application
requirements and constraints) and executing complex service-based applications using a
flexible and extensible concept of composite. In this work, we show how it is possible to
go seemingly from the high level description to the execution, and how the system, all
along this long process, is able to compute and enforce the conformity and compatibility

www.manaraa.com

106 J. Estublier, I.A. Dieng, and E. Simon

of the different composite descriptions, while enforcing minimality, completeness and
consistency properties. Our work is a step toward the above goal, but even in its current
form, it provides a large fraction of the properties discussed above and show the feasi-
bility of the approach. We expect future work to introduce how the dynamism of ser-
vice-based applications is managed in our system and to present more precisely the
service composite execution.

SAM is available at http://sam.ligforge.imag.fr and CADSE at http://cadse.imag.fr.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, H.: Web Services – Concepts, Architectures
and Applications. Springer, Heidelberg (2003)

2. Channa, N., Li, S., Shaikh, A.W., Fu, X.: Constraint Satisfaction in Dynamic Web Service
Composition. In: 6th International Workshop on Database and Expert Systems Applica-
tions, pp. 658–664 (2005)

3. Dustdar, S., Schreiner, W.: A survey on web services composition. International Journal of
Web and Grid Services (IJWGS) 1, 1–30 (2005)

4. Estublier, J., Vega, G., Lalanda, P., Leveque, T.: Domain Specific Engineering Environ-
ments. In: APSEC 2008 Asian Pacific Software engineering Conference (2008)

5. Estublier, J., Simon, E.: Universal and Extensible Service-Oriented platform. Feasibility and
Experience: The Service Abstract Machine. In: The 2nd International Workshop on Real-Time
Service-Oriented Architecture and Applications (RTSOAA). IEEE, Los Alamitos (2008)

6. Howes, T.: RFC 1960: a String Representation of LDAP Search Filters (1996),
http://www.ietf.org/rfc/rfc1960.txt

7. Jaeger, M.C., Mühl, G.: QoS-based Selection of Services: The implementation of a Ge-
netic Algorithm. In: KiVS Workshop: Service-Oriented Architectures and Service Ori-
ented Computing, pp. 359–370 (2007)

8. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE Internet
Computing 8, 51–59 (2004)

9. OASIS, Web Service Business Process Execution Language Version 2.0. (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

10. Orriens, B., Yang, J., Papazoglou, M.P.: Model Driven Service Composition. In: Or-
lowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS,
vol. 2910, pp. 75–90. Springer, Heidelberg (2003)

11. OSGi Release 4, http://www.osgi.org/Specifications/HomePage
12. OSOA, Service Component Architecture: Assembly Model Specification Version 1.0. (2007),

http://www.osoa.org/display/Main/Service+Component+Architect
ure+Specifications

13. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:
State of the Art and Research Challenges. IEEE 40, 38–45 (2007)

14. Papazoglou, M.P., Van den Heuvel, W.J.: Service oriented architectures: approaches, tech-
nologies and research issues. VLDB Journal 16, 389–415 (2007)

15. Pedraza, G., Estublier, J.: An extensible Services Orchestration Framework through Con-
cern Composition. In: Proceeding in International Workshop on Non-functional System
Properties in Domain Specific Modeling Languages, NFPDSML (2008)

16. W3C, Semantic Markup for Web Services (2004),
 http://www.w3.org/Submission/OWL-S/

17. WSML: Web Service Modeling Language, http://www.wsmo.org/wsml/
18. Yen, I.-L., Ma, H., Bastani, F.B., Mei, H.: QoS-Reconfigurable Web Services and Compo-

sition for High-Assurance Systems, vol. 41, pp. 48–55. IEEE Computer Society Press, Los
Alamitos (2008)

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 107–119, 2010.
© Springer-Verlag Berlin Heidelberg 2010

An Aspect-Oriented Framework for Event Capture
and Usability Evaluation

Slava Shekh and Sue Tyerman

.School of Computer and Information Science
University of South Australia, Australia

shesy006@students.unisa.edu.au, Sue.Tyerman@unisa.edu.au

Abstract. Recent work in usability evaluation has focused on automatically
capturing and analysing user interface events. However, automated techniques
typically require modification of the underlying software, preventing non-
programmers from using these techniques. In addition, capturing events re-
quires each event source to be modified and since these sources may be spread
throughout the system, maintaining the event capture functionality can become
a very arduous task. Aspect-oriented programming (AOP) is a programming
paradigm that separates the concerns or behaviours of a system into discrete as-
pects, allowing all event capture to be contained within a single aspect. Conse-
quently, the use of AOP for usability evaluation is currently an area of research
interest, but there is a lack of a general framework. This paper describes the de-
velopment of an AOP-based usability evaluation framework that can be dy-
namically configured to capture specific events in an application.

Keywords: Aspect-oriented programming, Usability evaluation, Human-
computer interaction.

1 Introduction

Usability evaluation is a technique used in the area of human-computer interaction
(HCI) to assess how easily a user can interact with an interface. Software applications
generate user interface events as part of their operation, and these events are used to
assist in usability evaluation. Recent work in this area has examined techniques for
automating usability evaluation by automatically capturing and analysing user inter-
face events [1]. Automation allows the events to be captured with minimal human
intervention and the event capture is unobtrusive from the perspective of the user, so
the act of observation does not affect the activities being observed.

However, in order to automatically capture these events, the underlying software
needs to be modified, requiring further preparation time for the usability evaluation
and the involvement of a programmer to make the modifications. In comparison, a
non-automated method, such as heuristic evaluation, can be performed by a non-
programmer [2].

Additionally, user interface events occur in different components of the application,
making it necessary to modify the system in each of these places to facilitate event cap-
ture. These modifications become increasingly difficult to manage in larger systems and
extending the software becomes a very arduous task, because the software developer

www.manaraa.com

108 S. Shekh and S. Tyerman

needs to find and change each individual part. For instance, consider a situation where
the current system captures events by displaying them on the screen. If the need arises
for these events to also be stored in a database, then each component of the system
needs to be individually modified in order to implement the change. If the system con-
tains hundreds or thousands of components, then modification can become infeasible.

Nonetheless, the limitations described can be overcome using aspect-oriented pro-
gramming (AOP). AOP is a programming paradigm that focuses on separating the
cross-cutting concerns of a system. A concern is a function or behaviour of the appli-
cation, and can be categorised as either a core concern or a cross-cutting concern. A
core concern is a primary behaviour, while a cross-cutting concern is a behaviour that
spreads across multiple parts of the system [3].

Consider a simple banking application, which supports three functions: withdraw
money, view balance and log event. An event is logged when either withdraw money or
view balance is executed. Withdraw money and view balance are core concerns, because
they provide the primary behaviour of the system, while log event is a cross-cutting
concern, as its functionality needs to be integrated into both withdraw money and view
balance in order for it to be able to log events generated by those components.

Traditional paradigms, such as object-oriented programming (OOP) provide lim-
ited support for separation of concerns. For example, developing a software system
with OOP is based on the idea of objects. A single object can be used to handle a
single core concern, such a system function, but is not able to encapsulate a cross-
cutting concern, such as event logging. Conversely, AOP addresses separation of
concerns using aspects, which are able to effectively encapsulate both core and cross-
cutting concerns. Each aspect is designed separately from the rest of the system and
all aspects are then integrated into the system using an aspect weaver. A weaver adds
the aspect code into the base code of the application at specific points that are defined
by the programmer, called join points (see Figure 1).

2 Related Work

AOP offers a number of opportunities that could benefit human-computer interaction.

2.1 Event Tracing

The use of AOP for event tracing was demonstrated by Low [4] in the development of
Toolkit for Aspect-oriented Tracing (TAST), which handles all trace-related activities
in Java applications. TAST is a support tool for the Test and Monitoring Tool, which
had previously been developed at Siemens.

In addition to Low’s work on event tracing, AOP has been used in the development
of a trace monitor [5]; a tool that observes a system to detect sequences of events and
takes action when events occur in a particular pattern. The tool was developed using a
combination of AspectJ (a popular Java-based implementation of AOP) [6], and an-
other language called Datalog. However, AspectJ can only trigger code at the occur-
rence of a single event, so the authors introduced a new language feature to AspectJ
called “tracematches”, which allows code to be triggered when an event sequence
matches a pattern.

www.manaraa.com

 An Aspect-Oriented Framework for Event Capture and Usability Evaluation 109

Fig. 1. Basic operation of an aspect weaver

2.2 Event Capture

Hartman and Bass [7] described and implemented an event logging system for
graphical applications to capture additional event logging information at the architec-
tural boundaries of the application. The system was implemented using Java and
Swing, and cross-cutting concerns, such as logging, were handled by AspectJ. The
system was then applied to two applications and tested with a small user group. The
results showed that the new system addressed many of the log-related problems that
were described by earlier authors, including Hilbert and Redmiles [1], in their survey
of usability evaluation techniques.

Tao further explored AOP-based event capture by using AOP as a means of captur-
ing user interface events that occurred in different parts of the application [3, 8]. As-
pects were added to the application, with the responsibility of capturing different
events, along with contextual information. The use of an aspect-oriented approach
allowed system-wide events to be captured in a single location.

2.3 Usability Evaluation

Extending on aspect-based event capture, Tarta and Moldovan [9] used AOP to auto-
mate the process of usability evaluation by developing a usability evaluation module,
which captured events using an aspect-oriented approach. This module was integrated
as part of a working application and then tested with a small user group. The testing
showed promising results when compared to traditional usability evaluation tech-
niques, such as event log analysis. Their research also provides ample opportunities
for future work, such as the need for a usability evaluation framework based on AOP.
The implementation of such a framework is the primary focus of this paper.

Although AOP is a suitable approach for conducting usability evaluation, there are
other techniques that may also be useful. One group of researchers compared two ap-
proaches for conducting usability evaluation: aspect-oriented programming and agent-
based architecture [10]. The comparison described both techniques as being effective
for usability evaluation, and showed that AOP could support usability testing without
the need to modify the original application code. The comparison provides valuable

www.manaraa.com

110 S. Shekh and S. Tyerman

insights into different techniques for conducting usability evaluation and highlights the
validity of an aspect-oriented approach.

3 Framework

The primary aim of the research presented in this paper was to develop a usability
evaluation framework using AOP, with no impact on the source code. If AOP was not
used, in the worst case scenario, twenty duplicate sets of logging code would be
needed to record mouse events alone, leading to potential mistakes and difficulties
with maintenance. With over 100 different events being observed, AOP has a clear
advantage over traditional approaches.

The main purpose of the framework is to capture user interface events and assist in
usability evaluation. At the same time, the framework aims to be as re-usable as pos-
sible, so that it can be used in different applications, following the recommendations
of [9].

In order to capture events, the framework needs a software application to act as a
source of events; an event being any change of state in the system. In this implemen-
tation, a Java-based application called the ACIE Player has been used as the event
source. The Player provides an integrated environment for viewing synchronised data
streams, including audio, video and transcribed text (see Figure 2). In addition, the
Player also allows the user to modify the transcribed text and annotate the different
data streams.

Fig. 2. Screenshot of the ACIE Player

www.manaraa.com

 An Aspect-Oriented Framework for Event Capture and Usability Evaluation 111

The ACIE Player has been chosen as the event source for the framework, because it
is a GUI-oriented application, which generates a large number of user interface events.
This provides the framework with a lot of event data to capture and analyse. Since the
ACIE Player is a Java-based application, a popular Java AOP implementation called
AspectJ has been used for developing the aspect-oriented parts of the framework.

The framework consists of four main components: aspect interface, event capture
module, framework frontend and output module. These components and their interac-
tions are shown in Figure 3, and described in more detail below.

Fig. 3. Overview of the framework architecture

3.1 Aspect Interface

The aspect interface is specific to the ACIE Player, while the other components can
be re-used by other applications that adopt the framework. Initially, a programmer
needs to create the aspect interface for the target application, so that the framework
has knowledge of the events that can be generated by the application. The aspect
interface is populated with a series of join points that map to the GUI components
which can generate events.

For instance, the work area is a GUI component in the ACIE Player and contains a
method for cascading windows, which generates the event of windows being cas-
caded. The following join point in the aspect interface maps to this method and thus,
captures the event:

 after() : target(WorkArea) && execution(* cascadeWindows()) {
 String action = "Windows Cascaded";
 Event event = new Event(action);
 CaptureModule.logEvent(event);
 }

Although the joint point mapping needs to be done by a programmer, each unique
application only needs to be mapped once.

www.manaraa.com

112 S. Shekh and S. Tyerman

3.2 Framework Frontend

Once the programmer has created the aspect interface, an investigator can configure
the interface and perform a usability evaluation without any more input from the pro-
grammer. In order to configure the interface, the investigator uses the framework
frontend. This component provides a GUI with a series of checkboxes (see Figure 4),
which are automatically generated based on the join points present in the aspect inter-
face. The investigator then selects checkboxes based on the GUI components and
specific events that they are interested in logging.

In addition, the final tab of the framework frontend allows the investigator to select
their preferred output formats. The investigator’s overall selection in the frontend is
saved to a configuration file.

3.3 Event Capture Module

Once the configuration file has been set up, the framework can begin logging events.
While a user is interacting with the ACIE Player, the framework runs in the back-
ground and records their actions. However, the framework only logs the events that
are specified in the configuration file, which is determined by the investigator’s selec-
tion in the framework frontend. Each time an event occurs and has a corresponding
entry in the configuration file, the aspect interface requests the event capture module
to log that event. The event capture module stores the event internally, and then
passes it on to the output module.

3.4 Output Module

The output module is responsible for processing events into different output formats.
Currently, the module is capable of producing the following formats:

1. Displaying events in the system console
2. Writing events to a plain text file
3. Writing events to a comma-separated values (CSV) file
4. Writing events to an XML file
5. Generating a linear graph visualisation of the events
6. Generating a complex graph visualisation of the events

Fig. 4. Screenshot of a section of the framework frontend

www.manaraa.com

 An Aspect-Oriented Framework for Event Capture and Usability Evaluation 113

The first four output formats are all textual representations of the event data. The
console output is a temporary format, existing only during the execution of the soft-
ware, while the other formats provide permanent storage of data. Each output format
stores the event data in a different structure, which offers alternative data representa-
tions for event analysis. In addition to textual formats, the framework is also able to
generate graph visualisations of the event data. Each event is modeled as a node and
relationships between events are shown as directed edges in the graph.

The output module offers two types of graph visualisations (referred to as linear
and complex), which differ in their placement of nodes, but present the same content.
A linear graph visualisation is shown in Figure 5. The rectangles represent GUI com-
ponents in the ACIE Player, while the other shapes correspond to different events.
The colour shading of the shapes indicates the time of the event’s occurrence, where
darker shapes represent earlier events.

The six output formats currently supported by the output module show the flexibil-
ity of the framework in being able to generate different types of output. Additional
formats could be added quite easily, meaning that the framework could potentially
generate output for a wide range of purposes.

Fig. 5. Linear graph visualization

4 Case Study

The framework was tested and validated using a case study. The study was targeted at
the Information Systems Laboratory (InSyL) of the University of South Australia,
which is a specific user group of the ACIE Player [11]. The case study consisted of an
investigation experiment and a usability experiment. The investigation experiment
evaluated the use of the framework itself, while the usability experiment tested the

www.manaraa.com

114 S. Shekh and S. Tyerman

effect of AOP on system performance to identify whether AOP was a suitable driving
technology for the framework.

The participants selected for both experiments were a combination of programmers
and non-programmers, which helped evaluate the general effectiveness of the frame-
work for all user types. All participants completed the usability experiment first, and
thus, this was their initial point of contact with the ACIE Player and framework.

4.1 The Case

Consider the following scenario, which illustrates how the ACIE Player is used by
members of InSyL and is the target case for the study.

An analyst is interested in observing a recorded meeting and analysing the behav-
iour and interaction of the meeting participants. The analyst has access to the video
and audio streams of the recorded meeting, and a transcript that is automatically gen-
erated from the audio. The analyst observes the video and transcript in small sections
(i.e. 10 seconds at a time), and makes textual annotations based on the behaviour of
participants. The analyst records the annotations using a standard syntax to make the
information easier to categorise. For instance, if a participant stands up and says
something, the analyst might record “P1: stand, speak”.

Performing this task without an integrated tool is problematic, because the analyst
needs to run multiple applications concurrently, and manually synchronise them. For
example, they might run a video player to watch the meeting, a transcription program
to read the meeting transcript and a text editor to record their annotations. Since all of
these are separate applications, the analyst will have to constantly check that the data
from each application is synchronised.

The ACIE Player is preferable for performing the task, because it is able to provide
all of the required capabilities in an integrated and synchronised environment. Using
the ACIE Player minimises the cognitive overhead for the analyst in performing their
task, since the work is managed within a single application. This also reduces the
likelihood of errors and inconsistencies in the analysis, because the analyst no longer
needs to spend time managing and synchronising different media and software appli-
cations, and is able to focus more on their actual task.

4.2 Usability Experiment

In the usability experiment, all participants took on the role of a user. The main pur-
pose of this experiment was to evaluate whether or not users could detect any degra-
dation in system performance due to the presence of the framework. This helped to
identify whether AOP was a suitable technology for capturing events and running the
framework.

Each user carried out two simple tasks using the ACIE Player, based on a set of in-
structions. In both tasks, the overall flow of activities was as follows:

1. Launch the ACIE Player
2. Create a project (a project is simply a collection of related files)
3. Add some files to the project
4. Customise the work environment
5. Play the video

www.manaraa.com

 An Aspect-Oriented Framework for Event Capture and Usability Evaluation 115

6. Edit the transcript
7. Create, edit and remove an annotation
8. Close the application

During one of the tasks, the participant used the ACIE Player by itself, while during
the other task they used the Player with the framework enabled. The presence of the
framework was randomised during each task to minimise the existence of bias, and to
prevent learning effects from affecting survey results. Participants were not told
whether the framework was enabled during a particular task, and care was taken to
ensure that there were no clues to reveal this information.

When enabled, the framework was configured to capture all available events in
three different output formats: plain text, CSV and XML. This produced a large
amount of event data and was therefore an accurate way of testing the user’s ability to
detect the framework.

Each user completed a short survey upon completing the first task of the experi-
ment and another survey at the end of the experiment. Each survey presented the user
with two questions:

Question 1 – were you aware of the presence of the framework?
Question 2 – did the framework interfere with your task?

It was assumed that the participants had basic computer skills and experience with
Window-based applications, but they were not required to have any prior experience
in using the ACIE Player or the framework. Each user was simply required to follow
a set of instructions as best as they could, without any practice or training.

4.3 Investigation Experiment

In the investigation experiment, participants were randomly divided into three groups,
where each group consisted of a user and an investigator. All participants had already
completed two tasks with the ACIE Player in the usability experiment, so each person
had the same amount of experience in using the Player and the framework.

The user of each group carried out the task from the first experiment, while the in-
vestigator observed the user and conducted a simple usability evaluation. The investi-
gator performed this evaluation by following a set of instructions and completing an
objective sheet – counting the occurrence of specific events and comparing this to
other events. For example, one of the objectives asked the investigator to identify
whether tile window events or cascade window events occurred more often.

The overall flow of activities during the investigation experiment was as follows:

1. Investigator receives an instruction sheet and an objective sheet
2. Investigator launches the usability evaluation framework
3. Investigator configures the framework to capture the events described on the

objective sheet
4. User launches the ACIE Player and performs the activities from the usability

experiment
5. User closes the ACIE Player
6. Investigator examines the event logs that were generated by the framework
7. Investigator completes the objective sheet

www.manaraa.com

116 S. Shekh and S. Tyerman

Upon completion of the experiment, the investigator completed a survey that was
answered by circling a number on a 7-point Likert scale. The number 1 represented a
very negative answer, while 7 represented a very positive answer. For instance, the
first question was “how would you rate your computer skill level?” The number 1
matched to the verbal answer of “beginner”, while 7 matched to “expert”.

Once again, participants were not required to have any prior experience in using
the ACIE Player or framework.

5 Experimental Results

The same group of six participants was involved in both experiments of the study. All
participants were members of the InSyL group.

5.1 Usability Experiment

All six participants took on the role of a user in the usability experiment. The primary
source of data in this experiment was the two surveys that users were required to
complete, in which they provided responses to the questions described in Section 4.2.
Almost all users indicated that they did not notice the presence of the framework, and
that it did not interfere with their task.

In one case, a user thought that they noticed the framework running during both of
their tasks, but it was only running during one task. This suggests that what the user
noticed was not actually the framework. Thus, the results indicate that AOP does not
affect software usability and is a suitable technology for driving the framework.

Fig. 6. Investigator survey results

www.manaraa.com

 An Aspect-Oriented Framework for Event Capture and Usability Evaluation 117

5.2 Investigation Experiment

In the investigation experiment, the six participants were divided into three groups. In
each group, one participant took on the role of a user and the other participant became
the investigator. At the end of the experiment, the investigator filled in a survey by
answering questions on a 7-point Likert scale.

The graph in Figure 6 shows the results obtained from the investigator survey. The
survey questions have been abbreviated to improve the readability of the graph. The
full questions are as follows:

• Computer Skill – how would you rate your computer skill level?
• Programming – how much experience have you had with computer

programming?
• Ease of Use – how easy was the framework to use?
• Information – did the framework provide you with the information you needed

to complete your objectives?
• Enjoyment – overall, did you enjoy using the framework?
• Usefulness – do you see the framework as something that you could use in

your own work?

The graph shows that the investigators varied greatly in computer skill and program-
ming ability, based on their self-assessment. However, all of the investigators found
the framework difficult to use, even those with prior computer and programming
experience.

Investigators described that the main difficulty was encountered while configuring
the framework. The instruction sheet and the framework provided a large amount of
information, which was very overwhelming for the investigators. One user explained
that the framework GUI was “cramped” with information and that they were confused
about what they needed to do to meet the requirements of their task.

Nonetheless, after thoroughly explaining the task to the investigator and describing
how the framework should be configured, all investigators were able to complete the
task successfully, even those with limited computing / programming experience.

Although configuring the framework generally proved to be a difficult task, the fi-
nal task of interpreting the event data and completing the objective sheet was consid-
ered much easier. All investigators were able to fill in the objective sheet without
encountering any major problems, and all of their answers proved to be 100% correct,
when compared to the generated event data.

6 Future Work

The framework does not log every single event generated by the ACIE Player. Cur-
rently, only the user-initiated events are captured, but internal application events are
ignored. The framework could be extended to capture all events generated by an
application, which may prove to be useful. For example, the logging of internal
events could provide the programmer with a trace of program execution to assist in
debugging.

www.manaraa.com

118 S. Shekh and S. Tyerman

Some members of InSyL are not only interested in observing the participants of re-
corded meetings, but also in observing those who are observing the meeting. Since AOP
has proven to be particularly useful in capturing a user’s actions as they interact with an
application, it may also be possible to capture and analyse the actions of an observer.

One of the current limitations of the framework is that a programmer needs to cre-
ate an aspect interface for each unique application. This involves examining the appli-
cation source code, discovering the join points and adding these join points to the
aspect interface. The framework could be extended to automatically discover the join
points and generate the aspect interface, potentially saving time for the programmer.

The case study showed that investigators found the framework difficult to use. One
reason for the difficulties was the large amount of information presented in the
framework frontend. Therefore, further analysis needs to be done in improving
the GUI or creating a completely new one. For instance, the framework could run the
ACIE Player in a framework configuration mode, where the investigator clicks on
various GUI components in the Player and the framework then enables event logging
of those particular components. This approach may be more intuitive, because the
investigator would be clicking on the actual components and performing the actual
operations that they want to log, as opposed to selecting checkboxes with the names
of those operations.

Although the framework has been evaluated using a case study, the study only ex-
amined a single scenario of usage and the framework has only been tested with a
single application (the ACIE Player). Since the framework is designed to be reusable,
it needs to be tested with other applications to evaluate its effectiveness in different
environments.

7 Conclusions

Aspect-oriented programming allows usability evaluation concerns, such as event
logging, to be separated from the rest of the system. Researchers have already begun
to explore this area, and in particular, Tarta and Moldovan [9] suggested the
development of an AOP-based usability evaluation framework. Implementing this
framework has been the primary accomplishment of this research project.

The framework was developed as an extension of a software application called the
ACIE Player. The use of AOP enables the framework to be dynamically configured to
capture a specific subset of all of the mapped events within the Player. The configura-
tion is provided through a frontend, making the framework accessible to both pro-
grammers and non-programmers.

A case study, consisting of a usability and an investigation experiment, was used to
evaluate the implementation. The results showed that the framework could assist in
performing usability evaluation. Furthermore, the data from the usability experiment
revealed that AOP did not create any performance constraints on the working envi-
ronment, suggesting that AOP is a suitable technology for driving the framework.

Acknowledgements. This research project was in part funded through the UniSA/
DSTO Research Agreement “Human Interaction Studies on the use of Speech Tech-
nology and Speaker Localisation in support of LiveSpaces: 2006/1170285: ACIE
Player v2.0 Development Project – Honours Scholarship 2008”. We also thank
Ahmad Hashemi-Sakhtsari and Michael Coleman for their assistance.

www.manaraa.com

 An Aspect-Oriented Framework for Event Capture and Usability Evaluation 119

References

1. Hilbert, D.M., Redmiles, D.F.: Extracting Usability Information from User Interface
Events. ACM Computing Surveys 32(4), 384–421 (2000)

2. Ivory, M.Y., Hearst, M.A.: The State of the Art in Automating Usability Evaluation of
User Interfaces. ACM Computing Surveys 33(4), 470–516 (2001)

3. Tao, Y.: Capturing User Interface Events with Aspects. In: Jacko, J.A. (ed.) HCI 2007.
LNCS, vol. 4553, pp. 1170–1179. Springer, Heidelberg (2007)

4. Low, T.: Designing, Modelling and Implementing a Toolkit for Aspect-oriented Tracing
(TAST). In: AOSD 2002 Workshop on Aspect-Oriented Modeling with UML (2002)

5. Avgustinov, P., Bodden, E., Hajiyev, E., Hendren, L., Lhotak, O., Moor, O., Ongkingco, N.,
Sereni, D., Sittampalam, G., Tibble, J., Verbaere, M.: Aspects for Trace Monitoring. In:
Formal Approaches to Testing and Runtime Verification, pp. 20–39. Springer, Heidelberg
(2006)

6. The AspectJ Project, http://www.eclipse.org/aspectj/
7. Hartman, G.S., Bass, L.: Logging Events Crossing Architectural Boundaries. In: Costabile,

M.F., Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 823–834. Springer,
Heidelberg (2005)

8. Tao, Y.: Toward Computer-Aided Usability Evaluation for Evolving Interactive Software.
In: ECOOP 2007 Workshop on Reflection, AOP and Meta-Data for Software Evolution.
University of Magdeburg (2007)

9. Tarta, A.M., Moldovan, G.S.: Automatic Usability Evaluation Using AOP. In: 2006 IEEE
International Conference on Automation, Quality and Testing, Robotics, pp. 84–89. IEEE
Computer Society, Los Alamitos (2006)

10. Tarby, J., Ezzedine, H., Rouillard, J., Tran, C.D., Laporte, P., Kolski, C.: Traces Using As-
pect Oriented Programming and Interactive Agent-Based Architecture for Early Usability
Evaluation: Basic Principles and Comparison. In: Jacko, J.A. (ed.) HCI 2007. LNCS,
vol. 4550, pp. 632–641. Springer, Heidelberg (2007)

11. Information Systems Laboratory, http://www.insyl.unisa.edu.au/

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 120–132, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Implementing Domain Specific Process Modelling

Bernhard Volz and Sebastian Dornstauder

Chair for Applied Computer Science IV, University of Bayreuth, Bayreuth, Germany
{bernhard.volz,sebastian.dornstauder}@uni-bayreuth.de

Abstract. Business process modelling becomes more productive when model-
lers can use process modelling languages which optimally fit to the application
domain. This requires the proliferation and management of domain specific
modelling languages and modelling tools. In this paper we address the issue of
providing domain specific languages in a systematic and structural way without
having to implement modelling tools for each domain specific language sepa-
rately. Our approach is based on a two dimensional meta modelling stack.

1 Introduction

"The only constant is change" is a quotation that is often used to characterize process
management. And indeed, changes can occur on all levels of process management
from running process instances over process models to modelling languages. Starting
at the "lowest" level, running process instances might have to be changed to react to a
sudden shift in the application. Among others, [28], [4] and [26] are investigating this
issue and suggest adequate solutions. Stepping one level up, the process model (defini-
tion) might have to be changed since it has become obvious that from now on a certain
application will be performed in a different way [28] [10]. Nevertheless, it is even
possible to step up another level in the hierarchy. Change on this level means to alter
the modelling language, which is the focus of our paper. For process aware information
systems this kind of change means an evolution of the whole system over time.

Why is the change of a process modelling language an issue that is worth investi-
gating? One can argue that a process modelling language should always remain un-
touched. However, we fully comply with the interpretation of change as being related
to diversity [5]. Although that book discusses change in the context of programming
languages, we can transfer the results to process management. The authors of [5]
notice that different domains will be characterized by different customer require-
ments. This observation can seamlessly be adopted in the business process manage-
ment domain. Here, the programming language is the modelling language and the
deployment platform corresponds to the process execution infrastructure.

We fully subscribe to the argument of [5] that the right languages enable develop-
ers to be significantly more productive. Besides we agree with the requirement that
"we need the ability to rapidly design and integrate semantically rich languages in a
unified way". This means on the one hand that each domain may and finally has to
create its individual, specific language (domain specific language, DSL). On the other
hand it means that a common basis for these languages facilitates their developments.
It is important to sustain – despite the diversity of DSLs – a kind of comparability and

www.manaraa.com

 Implementing Domain Specific Process Modelling 121

compatibility between them. We finally agree that meta modelling provides capabili-
ties to achieve this.

Changes of a modelling language need not to be huge. For example, in [20] process
steps are tagged to indicate whether they are prohibitive or mandatory. Although
being unspectacular, this tagging is very valuable for the execution and evaluation of
a process model. Standard process modelling languages like BPMN [22] do not offer
this special kind of tagging a priori.

At this point we also have to discuss whether changing a process modelling lan-
guage is counterproductive since it diminishes the possibility to exchange process
models with partners. Here, we assume that each development of a DSL takes a stan-
dard language (e.g. BPMN) as a starting point. The following two arguments support
the idea of domain specific process modelling and – therefore – the adaptation of a
standard modelling language:

First, domain specific adaptations are decisively enhancing the applicability of a
process model within that domain. Adaptations are almost exclusively of interest
within a domain. Thus, it is favourable to support adaptations.

Second, the use of a standard modelling language especially pays off when process
models have to be exchanged with partners. Using a meta modelling approach, it is
easy to distinguish between modelling elements of the standard language and those of a
domain specific adaptation. Thus domain specific adaptations can be filtered out before
a process model is exchanged. Although filtered process models lose information they
are relevant and readable for receiving partners since the latter merely contains stan-
dard modelling elements. Assuming that domain specific extensions are primarily of
interest for the domain developing them, this loss of information is tolerable.

Building up on these assumptions we present a meta modelling approach which
supports the definition of domain specific process modelling languages. The special
feature of our approach is that DSLs are derived from a common basic language; this
language will be most probable a sort of standard language. All language definitions
will be based on a meta model. This strategy bears major advantages.

• All derived DSL share a common set of modelling constructs. Thus, they remain
compatible and comparable to a certain extend.

• The definition of a DSL is performed in a systematic way by extending the meta
model of such a language.

• Extensions made for one DSL could be inherited by other domains, i.e. DSLs, if
it is considered to be valuable for the new domain as well. This feature supports
reuse of modelling constructs greatly.

• Tools can be built that support different DSLs at the same time. It is not neces-
sary to build a special tool for each DSL.

So, we deliberate on the benefit of a standard notation and of a customized notation.
We definitely favour the latter one – as argued in [5] – since productivity is supported
decisively better. Nevertheless, data exchange is still feasible.

The focus of this paper lies on tool support for domain specific modelling lan-
guages. The foundations of a domain specific processes modelling tool are discussed
in Section 2. Section 3 illustrates its basic part, a meta model stack. Several use cases
of change are analyzed in Section 4; Section 5 presents the foundation of a repository
which was implemented in order to get a working system and Section 6 finally dis-
cusses related work.

www.manaraa.com

122 B. Volz and S. Dornstauder

2 Foundations

The foundation of Perspective Oriented Process Modelling (POPM) were already
presented about 15 years ago in [13] and [14]; runtime and visualization aspects of
POPM are discussed in [15] and [16], respectively. Since POPM combines a couple
of matured modelling concepts in a synergetic manner, these modelling concepts will
be introduced in the following.

2.1 Layered Meta Modelling

In literature, the term “Meta Model” is often defined as a model of models – e.g. [27].
Thus a meta model defines the structure of models and can be seen as language for
defining models. We also use a model to define the structure (syntax) of our process
modelling languages. According to the Meta Object Facility (MOF) [23] this model
then becomes part of a meta model stack which consists of linearly ordered layers.
Since MOF restricts modellers (e.g. it allows only instanceOf relationships between
layers), our solution is only inspired by them.

In Fig. 1, the actual process models are defined on modelling layer M1 (right
boxes). A process model uses process (and data, organization etc.) definitions which
are collected in the “Type library” on M1 (left box). All process types are defined first
and then "used" in process models (e.g. as sub-processes) to define the latter. M0
contains running instances of processes defined on M1 (right boxes).

All process definitions on M1 are defined in a DSL previously specified at M2. M2
further contains the definition of an abstract process meta model (APMM) defining a
set of general language features such as Processes, Data Flow or Control Flow. Each
DSL is a specialization of elements contained in the APMM. M2 is therefore the layer
where a modelling language like BPMN (left boxes) and its derivations (cf. Section 1,
right boxes) are defined. It is noteworthy to mention that the elements of M2 refer-
ence those on M3 (MOF only allows “instanceOf” relationships).

An abstract process meta meta model (APM2M) at M3 defines basic modelling
principles; for instance, it defines that processes are modelled as directed graphs that
also support nesting of nodes; this defines the fundamental structure for process mod-
elling languages. Following the architecture of Fig. 1 (logical stack) allows for ex-
changing the modelling paradigm (graph based process models) at M3, defining DSLs
at M2 as specializations of a general modelling language (APMM) and establishing
type libraries at M1 which allow the re-use of existing process types in different
contexts. One of the most powerful features of our approach is that most of the above
mentioned kinds of changes can be applied by users and do not require a re-
implementation of the modelling tool.

Without going into details we want to introduce one more feature which is most
relevant for multi layer modelling. We borrow the Deep Instantiation pattern from [2]
that allows defining on which level of a modelling hierarchy a type or an attribute of a
type must be instantiated. Thus it is possible to introduce runtime instance identifica-
tion on M3 that enforces that all derived types must carry this identification.
However, this identification is not instantiated before M0.

www.manaraa.com

 Implementing Domain Specific Process Modelling 123

Process Model
Describes a domain specific application

Process Model
Describes a domain specific application

M3

M2

M1

M0

Abstract Process Meta Meta Model (APM2M)
Definition of the abstract syntax of a general process modelling language

Abstract Process Meta
Model (APMM)

Syntax of a general process
modelling language

Domain Specific Process Meta Model
(DSMM)

Syntax of domain specific modelling
language

Type library
Expressed in a domain

specific syntax

Process Model
Describes a domain specific application

<<instanceOf>>

<<references>>

<<references>>

<<references>>

Process Model
Describes a domain specific application

Process Model
Describes a domain specific application

Process Instance
Process which is currently executed

L1

Li
ng

ui
st

ic
 M

et
a

M
od

el

Logical Meta Model Stack

Li
ng

ui
st

ic
M

et
a

M
od

el
 S

ta
ck

L0

<<instanceOf>>

Fig. 1. Meta layer stack of POPM

2.2 Extended Powertypes

As mentioned, the APM2M on M3 defines process models to be interpreted as graphs;
for a tool it is then often necessary to interpret the capabilities (features) of each ele-
ment. For example, both "Process" and "Start-Interface" are nodes of a process model
graph. As in a graph usually each node can be connected with others, also the Start-
Interface could have incoming arcs; a fact that needs to be prohibited. Therefore al-
ready at modelling layer M3 a capability canHaveIncomingControlFlows can be
defined that describes whether a node accepts incoming flows or not.

Traditional approaches for implementing these capabilities are class hierarchies or
constraint languages such as the Object Constraint Language (OCL) [24]. Both ap-
proaches are not very useful since either the complexity of the required type hierarchy
explodes with an increasing number of capabilities or the user, who should be the one
to extend the language, must be familiar with an additional language. Therefore we
have chosen to extend the Powertype modelling pattern [25]. In our extension the
capabilities (e.g. to have incoming flows) are defined as attributes of the powertype.
These values then specify which capabilities of the partitioned type should be acti-
vated. Furthermore, only those attributes of a partitioned type are inherited by new
constructs whose capability attribute has been set to “true”. Thus our extension re-
moves features physically from a new construct.

2.3 Logical and Linguistic Modelling

In [1] an orthogonal classification approach is introduced. It contains two stacks that
are orthogonal to each other (cf. Fig. 1, Linguistic Meta Model Stack). The Linguistic
Meta Model Stack contains a meta model describing how models (including meta
models) of the application domain are stored. An orthogonal Logical Meta Model
Stack hosts one or more models which are purely content related.

It is crucial for this architecture that each layer of the logical stack can be ex-
pressed in the same linguistic model. As a result a modelling tool can be built that

www.manaraa.com

124 B. Volz and S. Dornstauder

allows users to modify all layers of the logical stack in the same way. Conventional
modelling tools do not support an explicit linguistic model and thus can usually mod-
ify only one layer of a logical model hierarchy [1]. Therefore a profound linguistic
meta model is a good basis for creating a modelling tool that allows users to modify
arbitrary layers and models.

Due to our extension of the powertype construct, the problem oriented conception
of the meta model stack of the logical model, and the application of the orthogonal
classification approach, a powerful foundation for an infrastructure for domain spe-
cific modelling tools is created. The following sections detail this infrastructure with
respect to the most important part – the logical meta model stack.

3 Content of the Logical Meta Model Stack

Our goal is to implement a tool for the POPM framework that is capable of handling
changes on the various levels of our meta modelling hierarchy. In this section we will
introduce the logical models our actual implementation is based on.

3.1 Abstract Process Meta Meta Model (APM2M)

As explained, the APM2M located at M3 provides basic structures for process model-
ling languages defined on layer M2, i.e. it prescribes the structure of the modelling
elements a process modelling language can offer. The most common graphical nota-
tion for process models in POPM is based on directed graphs whose meta meta model
is depicted in Fig. 2 (standard UML notation). It is important to differentiate between
modelling and visualization in this context. In Fig. 2 only the (content related) struc-
ture of a process modelling language – and respectively the process models derived
from it – is defined. How these models are visualized is not part of this model; visu-
alization is defined in an independent – but certainly related and integrated – model
that is published in parts in [16].

Nodes of a process graph are represented by Node in the APM2M (Fig. 2). Node-
Kind then describes the characteristics (features) of nodes in the graph where each
feature corresponds to an attribute of NodeKind. The Powertype pattern between
Node and NodeKind is established through the “partitions” relationship; Node repre-
sents the partitioned type and NodeKind is the powertype of the Powertype pattern.

outputPorts
*

partitions

NodeKind

+hasIncomingPorts : Boolean
+hasOutgoingPorts : Boolean
+supportsSubclassing : Boolean
+supportsAggregation : Boolean
+supportsData : Boolean

Node

+typeId : String
+usageId : String

Port

PortKind

+hasDataSource : Boolean

partitions

FlowKind

+flowType : String

Flow

partitions

inputPorts
*

superNode

NodeAttachment DataSource

dataSource 1

attachments

*

source
1

sink
1

flows

*

aggregatedNodes

*

Fig. 2. APM2M of POPM

www.manaraa.com

 Implementing Domain Specific Process Modelling 125

Processes are just one type of nodes in such a graph; another type of nodes is e.g.
Start-Interface. The different behaviours and capabilities of these two types are de-
termined by the attributes within NodeKind. Features defined and implemented by the
partitioned type Node are:

• HasIncomingPorts determines whether a modelling construct can be a destination
of incoming flows. It is deactivated for constructs defining the start of a process
(Start-Interface).

• HasOutgoingPorts defines if a modelling construct can be the origin of flows. For
example a “Stop” interface cannot have outgoing connections.

• SupportsData specifies whether a construct accepts inbound and outbound data
flows. If this feature is set to “false” but any of the has…Ports feature attributes
has been set to “true”, this defines connectivity through control flow(s) only.

• SupportsSubclassing determines if a construct can have another construct as
“super type”. The child construct will then inherit all attributes from the parent.

• SupportsAggregation defines whether a construct can contain usages of other
elements. Typically this feature is activated for process steps but not for inter-
faces. Thus if activated, hierarchies of modelling elements can be built.

In summary, the features presented above determine whether elements of Node can
establish relationships of a certain kind (e.g. superNode, aggregatedNodes, input-
Ports) to other types of the APM2M. The extended Powertype concept is also used for
the type PortKind – here it determines whether a port can be bound to data sources;
FlowKind is using the normal Powertype semantics.

3.2 Abstract Process Meta Model (APMM)

Fig. 3 shows the APMM of POPM, which defines the fundamental components of a
POPM-related process model: process, connector, data container, control and data
flow, organization, etc.

In the APMM a process is an element in a graph that can be interconnected with
other nodes (hasIncoming/OutgoingPorts = true), can receive and produce data (sup-
portsData = true), can be defined in terms of an already existing process (supportsSub-
classing = true) and can be used as a container for other elements (supportsAggregation
= true). A process – and in general every element on layer M2 – is an instance of a cor-
responding type (sometimes a powertype) on M3. For instance, Process is an instance of

outputPorts
*

partitions

NodeKind

+hasIncomingPorts : Boolean
+hasOutgoingPorts : Boolean
+supportsSubclassing : Boolean
+supportsAggregation : Boolean
+supportsData : Boolean

Node

+typeId : String
+usageId : String

Port

PortKind

+hasDataSource : Boolean

partitions

FlowKind

+flowType : String

Flow

partitions

inputPorts
*

superNode

NodeAttachment DataSource

dataSource 1

attachments

*

source
1

sink
1

flows

*

aggregatedNodes

*

Fig. 3. Abstract Process Meta Model of POPM

www.manaraa.com

126 B. Volz and S. Dornstauder

the powertype NodeKind and inherits all activated features from the partitioned type
Node. The type StartInterface is also an instance of the powertype NodeKind but does
neither support the creation of hierarchies (supportsAggregation = false) nor incoming
connections (hasIncomingPorts = false).

3.3 Domain Specific Meta Models (DSMMs)

According to Fig. 1, DSMMs are specializations of the APMM. As with object ori-
ented programming languages, abstract types cannot be instantiated. Thus, a DSMM
must first provide specializations for each element of the APMM (abstract model)
which can be instantiated. Then it can be enriched by additional modelling constructs
which determine its specific characteristics. We will show a simple example DSMM
from the medical domain in the following.

We decided to provide for each modelling element of the APMM at least one mod-
elling element in the DSMM for the medical domain. These domain specific model-
ling elements can furthermore be modified in order to capture specific characteristics
of the medical realm. For instance the attribute stepType for the modelling element
Medical Process (specialization of the APMM element Process) is introduced to de-
termine whether a given step is an administrational or a medical task. Also tags as
requested by [20] can be implemented in this way. Completely new modelling
constructs can be introduced as well, like the so-called MedicalDecisionElement. In
Section 4 we detail this feature.

At level M1 the "normal" modelling of processes takes place. Real (medical) proc-
esses use the types defined in the DSMM on M2; for example each process uses
MedicalProcess as basis. Accordingly, input and output data for each process can be
defined; the same applies to organizations and operations. In Fig. 4c an example is
shown. Note that all modelling elements must be defined before being used. For in-
stance, the process Anamnesis must be modelled (and put into the type library) before
it can be used as sub-processes within HipTEP.

3.4 Modelling Processes on Level M1

In Fig. 4c, a part of a real-world process HipTEP [8] which describes a hip surgery is
depicted. It consists of a start interface and two process steps namely Anamnesis and
Surgery. The start interface is connected with the Anamnesis step via a control flow
whereas Anamnesis and Surgery are also connected with data flows indicating the
transport of data items between them. The symbols (document, red cross) inside the
two steps are tags that indicate whether a step is more of medical or administrational
interest (this is valuable information when the process model has to be analyzed).
The tags correspond to the attribute stepType defined in the Medical DSMM for
MedicalProcess.

3.5 Stepwise Design of a Process Model

In Fig. 4 the three decisive layers of a flexible modelling tool are clearly arranged.
The figure illustrates how concepts evolve from very abstract (APM2M), to more
concrete (APMM), to domain specific (DSMM). Some of the metamorphoses of
modelling elements are explained in detail.

www.manaraa.com

 Implementing Domain Specific Process Modelling 127

HipTEP

Flow

Flow

Flow

Data
Source

Node

Port

Port

Port Node
Attachment

Data
Source

Node

Port

Port

Node

Port
a) APM2M

(M3)

Start
Interface

Process 1

Data
Container 1

Process 2

Data
Container 2

Control Flow

Data Flow

b) APMM
(M2)

Start

c) Medical
DSMM
(M2)

Surgery

PatientRecord

Anamnesis

PatientRecord

Fig. 4. Stepwise design of a process models on M1

M3 defines that nodes exist which carry ports (Fig. 4a). Ports are sometimes con-
nected with data sources and can be interconnected by Flows. In the derived APMM
(Fig. 4b) this definition is refined. Nodes are divided into two kinds: StartInterfaces
and Processes. Ports which are not connected to data containers have evolved into
gluing points for control flows between nodes (StartInterface and Process). Ports
connected to data sources demarcate output from input data container for processes
which are connected by data flows. Fig. 4c then depicts a concrete example written in
the language predetermined by the APMM of Fig. 4b. A part of a medical process
(HipTEP) is shown which consists of the processes Anamnesis and Surgery. One data
item is passed between these processes, namely PatientRecord.

Fig. 4 demonstrates the power of this approach since each artefact of a process
model is explicitly defined on clearly separated meta levels.

4 Dealing with Change

We will now explain concrete use cases of changes. These scenarios are ordered ac-
cording to their relevance in practice based on our experience. We also depict how
users can use them in a safe and structured way.

4.1 Change I: New Feature for an Existing Construct (Tagging)

Often it is necessary to distinguish processes from each other. Frequently, special tags
are attached to processes and visualized in a suitable form [8] [20]. Speaking in terms
of our logical meta model stack this means that an attribute is added to the corre-
sponding modelling element in the DSMM that holds the tag. In Section 3 we have
already shown this extension by adding the stepType attribute to the MedicalProcess
type. Depending on the actual value of this attribute a visualization algorithm can then
e.g. display icons appropriately.

4.2 Change II: Introducing New Constructs

One reason for adapting modelling constructs is the evolution of the application do-
main. For example, due to more insight into the domain more powerful and semanti-
cally richer modelling constructs have to be created.

www.manaraa.com

128 B. Volz and S. Dornstauder

A new construct can either be defined “from scratch” or by redefining an already
existing constructs of the DSMM or APMM. Fig. 5 gives an example for this kind of
change in the medical domain. Fig. 5a outlines the complex structure of a medical
decision path whereas Fig. 5b depicts a newly created modelling construct MedicalDe-
cisionElement which is a macro comprising the functionality of the complex process
structure of Fig. 5a. The problem with the process in Fig. 5a is that it is not compre-
hensible easily (only the complex structure of the decision path is of interest; therefore
we did not show any details in Fig. 5a). Thus we decided to introduce a new compact
modelling construct MedicalDecisionElement (Fig. 5b). This construct comprises the
same functionality but is much easier to interpret. First, the construct has a title clearly
showing its purpose. Then the most interesting decisions are shown in the list below
the title and the two possible outcomes – yes or no – are depicted on the right side. The
introduction of this compact construct – together with the consequent elimination of
unreadable process models – was one of the major factors why process modelling was
accepted as adequate means to illustrate the medical applications in the Ophthal-
mological Clinics of the University of Erlangen [17]. This project convincingly dem-
onstrated that a domain specific modelling language is not just "nice-to-have" but is
crucial for the acceptance of process management in general.

4.3 Change III: Enhancing / Changing the Modelling Method

So far all changes of process modelling languages were applied to DSLs individually.
In our approach it is also possible to change the modelling method as such. This
change happens on layer M3 and affects all process modelling languages defined
below. For instance, from now on we will prohibit control flows between nodes. Re-
ferring to the APM2M in Fig. 4 this means to remove ports which are not connected
with data sources. Consequently all flow derived from this constellation must be re-
moved from all process modelling languages on M2 and also from all defined process
models on M1.

"S
ta

rt
"

"Yes"

"No"

"Start"

Glaucoma suspicion?

HRT II.Disk < 2.47?
HRT II.RIM < 1.4?
FDT.Time > 60s
FDT.Errorfields > 2
Results plausible?

Ye
s

N
o

a) Exemplary structure of Medical Decision Path b) MedicalDecisionElement

Fig. 5. The MedicalDecisionElement (b) subsumes many single decisions (a)

5 Language for Linguistic Meta Modelling

As already mentioned earlier, linguistic meta modelling according to [1] is one of the
key-points in our solution for domain specific modelling. Therefore, we shortly want
to introduce our linguistic meta model and explain how models can be represented.

www.manaraa.com

 Implementing Domain Specific Process Modelling 129

Fig. 6 shows the hierarchy of all elements of the linguistic meta model (LMM) which
is inspired by commonly known models such as MOF [23] but contains elements which
are beyond the scope of them such as the possibility to fully represent Powertypes and
Deep Instantiation. All elements are derived from the basic type MElement that defines
fundamental features such as the existence of a name and an ID for each element. Ele-
ments which are directly derived from MElement are MModel for representing models
and MLevel for representing levels. Each model in the LMM consists of at least one meta
level; several levels can be interconnected via relationships represented as instances of
type MRelationship. Since arbitrary relationships can be defined between levels, the
LMM does not enforce a certain structure in the sequence or hierarchy of levels. Each
level then can hold concepts (MConcept) and relationships (MRelationship) which can
be organized in packages (MPackage). Therefore the contents of a level are derived from
the type MPackableElement.

A concept in the LMM implements a clabject [3] (which is especially useful when
implementing powertypes, also cf. [18]) and thus consists of an instance and a type
facet (MInstanceFacet, MTypeFacet). The type facet of a concept holds attribute defi-
nitions (MAttributeDefinition) whereas the instance facet of a concept stores
values for previously defined attributes (MAttributeValue). Relationships are again
used to establish some kind of link in between concepts.

Powertypes and Deep Instantiation are implemented as extensions (PTFeatureDe-
finition, DeepInstantiation) that can be assigned to each element within the LMM.
Nevertheless, these two extensions can only be added to concepts and not to a model,
a level or a package.

MRelationship

MElement

MPackableElement

MConcept MTypeFacetMInstanceFacet

MLevel

MPackage MAttributeDefinition MAttributeValueMElementExtension

MModel

PTFeatureDefinition DeepInstantiation

Fig. 6. Hierarchy of the elements of the linguistic meta model

The APM2M of POPM (cf. Section 3.1) can be represented in terms of the LMM as
follows (we are restricting ourselves to the concepts Node and NodeKind of the
APM2M and will also leave out packages):

model POPM { // definition of a model
 level M3 { // definition of a level
 concept Node { // definition of the concept Node
 definitions: // attribute definitions
 outPorts : Port[];
 superNode : Node;

 }

www.manaraa.com

130 B. Volz and S. Dornstauder

 // NodeKind is the powertype, Node is the partitioned type
 concept NodeKind partitions Node {
 definitions: // ‘enables’ is linked to the ext. powertypes
 hasOutgoingPorts : Boolean(false) enables Node.outPorts;
 supportsSubclassing: Boolean(false) enables Node.superNode;
 }
}

Then, the concepts on M2 (APMM and Medical DSMM) can be represented as follows:

model POPM {
 level M3 { ... }
 level M2 references M3 {

 package APMM {

 concept Process instanceOf M3::NodeKind {
 values:
 hasOutgoingPorts = true;
 supportsSubclassing = true;
 }
 }

 package MedicalDSMM {

 concept MedicalProcess extends APMM::Process { ...
 }
 }
 }
}

The LMM then provides to kinds of extensibility – an internal extensibility and an ex-
ternal extensibility. ‘Internal’ in the sense that the LMM can be extended itself thus
allows for more expressive language. Examples are the introduction of new relationship
types and the introduction of a representation for logic that are not yet part of the LMM.
The external extensibility refers to the possibility of extending and combining models
expressed in the LMM. In this scenario, the LMM can be seen as a common meta model
for representing arbitrary models which supports relating models of different kinds.

6 Related Work

We now give an overview on existing technologies and systems (beside those already
introduced in Section 2) that aim at increasing the sustainability of information sys-
tems. We will show that these are – per se – not appropriate for domain experts be-
cause they require extensive programming skills or are not flexible enough.

Generative Programming [6] and Software Factories [9] are techniques for the re-
use of code. Generative Programming aims at the generation of code out of a set of
templates. Requiring programming skills to produce valid and correct results, Genera-
tive Programming is unusable for end-users or domain experts. Software Factories in
contrast aim at reducing the cost factors (time, resources etc.) during application de-
velopment. This again is not suitable for end-users or domain experts. Even more
harmful is that both approaches are meant to be applied during the development phase
of an application but not during runtime.

Beside programming techniques, we also investigated complete meta modelling
systems e.g. the Microsoft Domain Specific Language Tools for Visual Studio [21],
the Eclipse Modeling Framework (EMF) [7] (along with related technologies that
support the generation of graphical editors) or MetaEdit+ [19]. Most of them use only

www.manaraa.com

 Implementing Domain Specific Process Modelling 131

two levels in which the type level defines the storage format for the user models.
Beside this the modelling freedom is restricted by a fixed underlying meta model.
Also many solutions are not able to use a new modelling language without generating
a new modelling environment.

Summarizing, there are solutions that provide some means for building modelling
tools. But either they require too much programming skills or they are not flexible
enough.

Even though we used the ISO/IEC 24744:2007 standard [12] and its preceding work
(e.g. [11]) as an inspiration of how powertypes can be used to express complex concepts
and relations, the ISO/IEC 24744:2007 standard and the solution presented here differ
significantly such that they cannot be compared. For instance, our solution does not
restrict extensions to additions – also elements of the standard POPM language can be
removed via the extended powertype pattern. Furthermore, the inclusion of Deep Instan-
tiation provides means for defining more freely when an attribute must be instantiated.

7 Conclusions

In this paper we introduced our approach for a more sustainable process modelling
environment that can be easily adapted by domain experts to their realm without
programming. We have based our system on many established technologies for the
development of flexible and adaptive systems. But only their combination in our com-
prehensive approach allows them to unfold their real power. We have then shown
how different adaptation scenarios can be performed with the help of these concepts.
Here the important key-point is that all common change requests can be performed
without writing code; instead only a new configuration for the system has to be pro-
vided. This is easy to set up even though the domain expert who is pursuing these
changes has not much knowledge about the system internals. Thus domain experts are
empowered to adapt the whole system perpetually to changing requirements which we
believe is a fundamental step towards more sustainability.

References

1. Atkinson, C., Kühne, T.: Concepts for Comparing Modeling Tool Architectures. In: Bri-
and, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 398–413. Springer,
Heidelberg (2005)

2. Atkinson, C., Kühne, T.: The Essence of Multilevel Metamodeling. In: Proceedings of the
4th International Conference on The Unified Modeling Language, Modeling Languages,
Concepts, and Tools. Springer, Toronto (2001)

3. Atkinson, C., Kühne, T.: Meta-level Independent Modelling. In: International Workshop
Model Engineering 2000, Cannes, France (2000)

4. Clarence, E., Karim, K., Grzegorz, R.: Dynamic change within workflow systems. In:
Conference on Organizational Computing Systems. ACM, Milpitas (1995)

5. Clark, T., Sammut, P., Willans, J.: Applied Metamodelling - A Foundation For Language
Driven Development. CETEVA (2008)

6. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley Professional, Reading (2000)

7. Eclipse Foundation. Eclipse Modeling Framework Project, EMF (2008)

www.manaraa.com

132 B. Volz and S. Dornstauder

8. Faerber, M., Jablonski, S., Schneider, T.: A Comprehensive Modeling Language for Clini-
cal Processes. In: Hein, A., Thoben, W., Appelrath, H.-J., Jensch, P. (eds.) European Con-
ference on eHealth 2007, GI, Oldenburg, Germany. Lecture Notes in Informatics (LNI),
pp. 77–88 (2007)

9. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. Wiley, Chichester (2004)

10. Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K., Teschke, M.: A comprehensive ap-
proach to flexibility in workflow management systems. SIGSOFT Softw. Eng.
Notes 24(2), 79–88

11. Henderson-Sellers, B., Gonzalez-Perez, C.: A powertype-based metamodelling framework.
Software and Systems Modeling 5(1), 72–90

12. ISO/IEC Software Engineering - Metamodel for Development Methodologies. Interna-
tional Organization for Standardization / International Electrotechnical Commission,
ISO/IEC 24744 (2007)

13. Jablonski, S.: MOBILE: A Modular Workflow Model and Architecture. In: 4th Interna-
tional Working Conference on Dynamic Modelling and Information Systems, Noordwi-
jkerhout, NL (1994)

14. Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architecture and
Implementation. International Thomson Computer Press (1996)

15. Jablonski, S., Faerber, M., Götz, M., Volz, B., Dornstauder, S., Müller, S.: Integrated
Process Execution: A Generic Execution Infrastructure for Process Models. In: 4th Interna-
tional Conference on Business Process Management (BPM), Vienna, Austria (2006)

16. Jablonski, S., Götz, M.: Perspective Oriented Business Process Visualization. In: ter
Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS,
vol. 4928, pp. 144–155. Springer, Heidelberg (2008)

17. Jablonski, S., Lay, R., Meiler, C., Müller, S., Hümmer, W.: Data logistics as a means of in-
tegration in healthcare applications. In: 2005 ACM symposium on Applied computing.
ACM, Santa Fe (2005)

18. Jablonski, S., Volz, B., Dornstauder, S.: A Meta Modeling Framework for Domain Spe-
cific Process Management. In: 1st International Workshop on Semantics of Business Proc-
ess Management (SemBPM) in conjunction with the 32nd Annual IEEE Int’l Computer
Software and Applications Conference (COMPSAC), Turku, Finland (2008)

19. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A Fully Configurable Multi-User and
Multi-Tool CASE and CAME Environment. In: 8th International Conference on Advanced
Information System Engineering, pp. 1–21. Springer, Heraklion (1996)

20. Lu, R., Sadiq, S.: On the discovery of preferred work practice through business process
variants. In: Parent, C., Schewe, K.D., Storey, V.C., Thalheim, B. (eds.) 26th International
Conference on Conceptual Modeling, pp. 165–180. Springer, Auckland (2007)

21. Microsoft. Domain-Specific Language Tools (2008)
22. Object Management Group. BPMN 1.1 Specification (2008)
23. Object Management Group. MOF 2.0 Specification (2008)
24. Object Management Group. OCL 2.0 Specification (2008)
25. Odell, J.: Advanced Object-Oriented Analysis and Design Using UML. Cambridge Uni-

versity Press, New York (1998)
26. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in work-

flow systems–a survey. Data & Knowledge Engineering 50(1), 9–34
27. Seidewitz, E.: What Models Mean. IEEE Software 20, 26–32
28. van der Aalst, W.M.P., Jablonski, S.: Dealing with workflow change: identification of is-

sues and solutions. International Journal of Computer Systems Science and Engineer-
ing 15(5), 267–276

www.manaraa.com

Bin-Packing-Based Planning of Agile Releases

Ákos Szőke

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

http://home.mit.bme.hu/∼aszoke/

Abstract. Agile software development represents a major approach to software
engineering. Agile processes offer numerous benefits to organizations including
quicker return on investment, higher product quality, and better customer satisfac-
tion. However, there is no sound methodological support of agile release planning
– contrary to the traditional, plan-based approaches. To address this situation, we
present i) a conceptual model of agile release planning, ii) a bin-packing-based
optimization model and iii) a heuristic optimization algorithm as a solution. Four
real life data sets of its application and evaluation are drawn from the lending
sector. The experiment, which was supported by prototypes, demonstrates that
this approach can provide more informed and established decisions and support
easy optimized release plan productions. Finally, the paper analyzes benefits and
issues from the use of this approach in system development projects.

Keywords: Agile conceptual model, Release planning, Bin-packing.

1 Introduction

Development governance covers the steering of software development projects. Tradi-
tional governance usually applies command-and-control approaches which explicitly
direct development teams. Experiences with these approaches – such as Control Objec-
tives for Information-Related Technology (CobiT) [1], and the Organizational Project
Management Maturity Model (OPM) [2] – show that they are too heavy in practice
for many organizations, although they provide a wealth of advice [3]. As a reaction to
so-called heavyweight methodologies [4], many practitioners have adopted the ideas of
agility [5]. Agile approaches are quickly becoming the norm, probably because recent
surveys showed agile teams are more successful than traditional ones [6,7]. Several
studies pointed out ≈ 60% increase in productivity, quality and improved stakeholder
satisfaction [7,8], and 60% and 40% reduction in pre-, and post-release defect rates [10].

In recent years, several agile methods have emerged. The most popular methods are
Extreme Programming (XP) [9](58%), Scrum [11](23%), and Feature Driven Develop-
ment (FDD) [12](5%) [13]. Despite variety of methods all of them share the common
principles and core values specified in the Agile Manifesto [5].

Release planning is an activity concerned with the implementation of the selected re-
quirements in the next version of the software. Agile release planning is usually based
on a prioritized list of requirements (typically User stories) and is made up of the follow-
ing major steps: the team i) performs estimation on every requirement, ii) determines

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 133–146, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.manaraa.com

134 Á. Szőke

Fig. 1. Release planning in agile software development

the number and the length of iterations using historical iteration velocity (i.e. how much
work can be done during each iteration), iii) distributes requirements into iterations con-
sidering constraints (Figure 1).

Problems. The essential aim of release planning is to determine an optimal execu-
tion plan of development respect to scarcity of available resources and dependencies
between requirements. However, distributions of requirements are iteratively selected
and assigned manually into iterations (see Figure 1). As a consequence, the following
factors are managed implicitly: P1) precedences (temporal constraints between require-
ments), P2) resource capacities (resource demands during iterations), and P3) priorities
(importance of each requirement delivery). Therefore, optimality of plans (i.e. maximal
business value or minimal cost) is heavily based on the manager’s right senses – never-
theless optimized project plans are crucial issues from the economic considerations of
both customer and developer sides.

Objectives. Our proposed method intends to mitigate previous problems (P1-3) by i)
constructing model of agile release planning which is intended to guide the design of
release planning tools, ii) formulating release planning task as an optimization model
that considers all the previous factors, and iii) providing a solution to this model by a
heuristic algorithm to easily produce release plans.

Outline. The rest of the paper arranged as follows: Sec. 2 presents common notions
of agile planning; Sec. 3 introduces our conceptual model, optimization model and
algorithm; Sec. 4 describes experiences; Sec. 5 discusses our solution; Sec. 6 focuses
on related work; Sec. 7 concludes the paper.

2 Agile Release Planning

In this section, we introduce agile release planning to provide the necessary background
information for the proposed method.

2.1 Requirements Specification

Common to all software development processes in any projects is the need to capture
and share knowledge about the requirements and design of the product, the development
process, the business domain, and the project status. Contrary to the traditional methods
(e.g. waterfall), agile methods advocate ’just enough’ documentations where the funda-
mental issue is communication, not documentation [4,11]. The agreed requirements not
only drive the development, but direct planning of projects, provide basis for acceptance

www.manaraa.com

Bin-Packing-Based Planning of Agile Releases 135

testing, risk management, trade-off analysis and change control [14]. In agile methods
User stories, Features, and Use cases (see XP [9], FDD [12]) are the primary models
of requirements and the source of effort estimation.

Estimating Effort. Agile teams focus on ’good enough’ estimates and try to optimize
their estimating efforts. A good estimation approach takes short time, and can be used
for planning and monitoring progress [15]. Effort estimation models usually based on
size metrics: Story points [16], Feature points [12], and Use case points [17]. These met-
rics are abstract units, express the whole size of development and usually not directly
convertible to person hours/days/months.

User Stories and Story Points. The most popular requirements modeling technique
in agile methods is the User story technique [16]. User stories are usually materialized
on electronic or paper Story cards with the description of i) the feature demanded by
stakeholders, ii) the goal of the customers, and iii) the estimated size of the develop-
ment work is expressed by a Story point and interpreted as person day effort (usually
classified into Fibonacci-like effort sequence: 0.5, 1, 2, 3, 5, 8, 13) [15].

Dependencies. The complexity of scheduling arises from the interaction between re-
quirements (User stories) by implicit and explicit dependencies. While the previous is
given by the scarcity of resources, the latter one is emerged from different precedences
between tasks’ realizations [18,20]:

i) functional implication (j demands i to function),
ii) cost-based dependency (i influences the implementation cost of j, so useful to

realize i earlier),
iii) time-related dependency (expresses technological and/or organizational demands).

3 Optimized Release Planning

In this section first, we formulate conceptual model of agile release planning, and
we point out release planning can be characterized as a special bin-packing problem.
Then we formulate a bin-packing-related optimization model for release planning, and
present a solution to this model in the form of a heuristic algorithm.

3.1 Conceptual Model of Agile Release Planning

In order to formulate the release planning model, first, we have to identify the main
concepts of agile release planning. These concepts are presented in the following list
and visualized with UML notation in Fig. 2 [19,15,21].

- Project: is a planned endeavor, usually with specific requirements and rolled out in
several deliverable stages i.e. releases.

- Release: produces (usually external) selected deliverable requirements for the cus-
tomer, contains 1-4 iterations with start/end date and an iteration count.

- Iteration: is a development timebox that delivers intermediate deliverables. It is
characterized by available resource capacity of the team – often expressed by iter-
ation velocity.

www.manaraa.com

136 Á. Szőke

Fig. 2. Information Model of Agile Release Planning

- Requirement: deliverable that the customer values. They can be classified two kind
of set of elements: new and changed requirements (functional and non-functional).
In most cases requirements mandates several realization steps that requires coop-
eration of some developers. Requirement usually requires several working days
realization effort that is estimated by developers or some method (see Sec. 2.1).

- Precedence: realization dependencies between requirements. Precedences emanate
from the following sources (j′, j denotes requirements) [18,20]:

i) functional implication (j demands j′ to function),
ii) cost-based dependency (j′ influences the implementation cost of j, so useful

to realize j′ earlier),
iii) time-related dependency (expresses technological/organizational demands).

These concepts not only help to identify the objects and the subject of the optimiza-
tion model but with the precise relationships it can also be used as database schema
definition for agile release planning applications.

3.2 A Prototype for Collaborative Agile Release Planning Data Collection

Previously presented conceptual model is realized by our MS Sharepoint-based web-
site (named Serpa) at Multilogic [22,23]. Sharepoint is browser-based collaboration
and a document-management platform, and its capability includes creating different
lists (as database tables). The previously constructed agile planning information model
(see Fig. 2) were implemented as Sharepoint lists. Figure 3 shows the visual appearance
of the prototype pointing out the Requirements list with User story, Priority, Story point
and Precedence properties. Thus, the portal was targeted as a collaborative workspace
for developers, and a tool for the management to collect all planning information.
With this web-based tool, the team can list requirements, indicate precedences, set ef-
fort estimation and priorities, and they also can share these information to facilitate
communication.

3.3 Mapping to Bin-Packing

Generally, a bin-packing problem instance is specified by a set of items and a standard
bin size. The objective is to pack every item in a set of bins while minimizing the total
number of bins used [24,25]. The analogy between release planning and bin-packing
problem can be explained as follows.

www.manaraa.com

Bin-Packing-Based Planning of Agile Releases 137

Fig. 3. Serpa: a prototype website for collaborating workspace of agile projects

The team’s resource capacity in an iteration stands for a bin size, while a require-
ment’s resource demand represents an item size. In the resource-constrained project
scheduling problem (RCPSP) context, we can view each iteration within release as a
bin into which we can pack different deliverable requirements. Without loss of gener-
ality, we can ensure that the resource demand of each requirement is less than team’s
resource capacity in an iteration. Then minimizing makespan (i.e. finding the minimum
time to completion) of this RCPSP is equivalent to minimizing the number of bins used
in the equivalent bin-packing problem [26].

We extend this ordinary bin-packing problem and interpretation with the following
elements to provide further computational capabilities for wide-ranging release plan-
ning situations (c.f. P1-3): i) precedences between items (requirements) (c.f. Sec. 2.1),
ii) varying capacities of bins (iterations), and iii) item priorities. From now on we call
this extended problem as bin-packing-related RCPSP (BPR-RCPSP).

3.4 Formulating BPR-RCPSP Model

Henceforth, without loss of generality, we focus on the User story technique to be more
concrete. Given a set of deliverable User stories j (j ∈ A : |A| = n) with required ef-
forts wj , and iterations n with different capacities ci (i ∈ {1, 2, ..., n}) within a release.
Let assign each User story into one iteration so that the total required effort in iteration
i does not exceed ci and the number of iteration used as a minimum while precedence
relation (matrix) Pj,j′ ∈ {0, 1} (where Pj,j′ = 1 if j precedes j′, otherwise Pj,j′ = 0 –
c.f. Sec. 2.1) holds. A possible mathematical formulation is:

Minimize z =
n∑

i=1

yi (1a)

subject to
n∑

j=1

wjxi,j ≤ ciyi (1b)

i′ − i � Pj,j′ : xi′,j′ = xi,j = 1 (1c)

www.manaraa.com

138 Á. Szőke

n∑
i=1

xi,j = 1 (1d)

where yi = 0 or 1, and xi,j = 0 or 1 (i, j ∈ N), and

xi,j =

{
1 if j is assigned to iteration i

0 otherwise
(2a)

yi =

{
1 if iteration i is used

0 otherwise
(2b)

The equations denote minimization of iteration count of release (1a), resource con-
straints (1b), temporal constraints (1c), and an item j can be assigned to only one itera-
tion (1d). We will suppose, as is usual, that the efforts wj are positive integers. Without
loss of generality, we will also assume that

ci is a positive integer (3a)

wj ≤ ci for ∀i, j ∈ N (3b)

If assumption (3a) is violated, ci can be replaced by
ci�. If an item violates assumption
(3b), then the instance is treated as trivially infeasible. For the sake of simplicity we
will also assume that, in any feasible solution, the lowest indexed iterations are used,
i.e. yi ≥ yi+1 for i = 1, 2, ..., n− 1.

3.5 Solving the BPR-RCPS Problem

For the previously formulated optimization model we developed a Binscheduling algo-
rithm (Algorithm 1). It is a constructive heuristic algorithm, which iteratively selects
and schedules an item (User story) into an iteration – where it fits best. In the program
listing lowercase and uppercase letters with indices denote vectors and matrices (e.g.
ci, Pj,j′). While bold-faced letters show concise (without indices) forms (e.g. c, P).

In the require section the preconditions are given. Each wj is the weight (required
effort) for User story j in Story point. Precedences between User stories can be repre-
sented by a precedence matrix where Pj,j′ = 1 means that User story j precedes User
story j′, otherwise Pj,j′ = 0. Both conditions Pj,j = 0 (no loop) and P is directed
acyclic graph (DAG) ensures that temporal constraints are not trivially unsatisfiable.
Priorities pj express stakeholders’ demands and are used by the scheduler algorithm
as a rule when choosing between concurrent schedulable User stories. Capacities of
iterations are calculated by taking the historical values of iteration velocities into con-
sideration. The ensure section prescribes the postcondition on the return value (X):
every User story j has to be assigned to exactly one iteration i.

During scheduling steps, first the initial values are set (line 1 − 5). The iteration
value (n) is equal to the number of User stories (line 1). The residual capacity denotes
the remained capacity of an iteration after a User story is assigned – so it is initially set
to capacity (line 3). The algorithm uses a ready list (rlist) and a scheduled list (slist)
to keep track of schedulable and scheduled User stories. Potentially schedulable items
(pot) are unscheduled items from which the algorithm can choose in the current control

www.manaraa.com

Bin-Packing-Based Planning of Agile Releases 139

Algorithm 1. Binsched algorithm with BF strategy
Require:

wj ∈ N /* weights of each User story j */
Pj,j′ ∈ 0, 1 ∧ Pj,j = 0 ∧ P is DAG /* precedences */
pj ∈ N, ci ∈ N /* priority values and capacity of each iteration */

Ensure: Xi,j ∈ 0, 1 ∧ ∀j∃!i Xi,j = 1
1: n ⇐ length(w) /* schedulable User stories */
2: X ⇐ [0]n,n /* assignment matrix initialization */
3: r ⇐ c /* residual capacities of each iteration */
4: rlist ⇐ ∅ /* ’ready list’ initialization */
5: slist ⇐ ∅ /* ’scheduled list’ initialization */
6: for fj = 0 to n do
7: pot ⇐ findNotPrecedentedItems (P)
8: rlist ⇐ pot \ slist /* construct ready list */
9: if rlist == ∅ then

10: print ’Infeasible schedule!’
11: return ∅
12: end if
13: j ⇐ min {pj} : j ∈ rlist
14: i ⇐ selectBestF ittingBin (wj , r)
15: Xi,j ⇐ 1 /* assign User story j to iteration i */
16: ri ⇐ ri − wj /* decrease residual capacity */
17: slist ⇐ slist ∪ {j}
18: P{1,...,n},j = 0 /* delete scheduled User story */
19: end for
20: return X

step without violating any precedence constraint (line 7). Previously assigned items are
extracted from potentially schedulable items to form the ready list (line 8). As long
as the ready list contains schedulable items, the algorithm chooses items from that list
– otherwise the schedule is infeasible (line 9). The minimum priority item is selected
from the ready-list to schedule (line 13). To find the proper iteration term for the selected
item, the best fit (i.e. having the smallest residual capacity) strategy (line 14) is applied,
and an item j is assigned to iteration i (i.e. Xi,j = 1). As a consequence residual
capacity of iteration i is decreased by item weight wj (line 16). Finally, scheduled
list (slist), is updated with scheduled item (lines 17), and no longer valid precedence
relations are also deleted from P after scheduling of the given item (lines 18). Iteration
proceeds until all items are assigned to iterations (line 6-19).

After termination, X contains the User story assignments to iterations, where the
number of nonzero columns denotes the packed iterations (i.e.

z ⇐ length
(
nonZeros

(∑n
j=1 wjxi,j

))
– c.f. (1a)).

There can be used several strategies (e.g. FirstFit, BestFit) to find the appropriate release
plan, but we used only one (the best fit) for simple demonstration (line 14). This greedy
strategy makes a series of local decisions, selecting at each point the best step without
backtracking or lookahead. As a consequence, local decisions miss the global optimal

www.manaraa.com

140 Á. Szőke

solution, but produce quick (time complexity is clearly O(nlogn)) and usually sufficient
results for practical applications [25].

Figure 4 illustrates the packing concept. This example shows the post-mortem release
planning result of a real life development situation using the previous algorithm.

Figure 4 (left) demonstrates the histogram of schedulable User stories. The x-axis
enumerates Story point categories (weights), while y-axis shows how many User stories
fall into these categories. Figure 4 (right) depicts planning results produced by Binsched
algorithm in stacked bar chart form: the schedulable User stories are packed into four
iterations (x-axis) with capacities 30, 30, 29, and 28 (y-axis). Bar colors on the Figure 4
(left) point out how Story points are distributed on Figure 4 (right).

Fig. 4. Release plan applying the BPR-RCPSP approach: Schedulable User stories (i) (left) and
User story assignments (Xi,j) (right)

4 Experimentation

To obtain a proof-of-concept we implemented the bin-packing-based algorithm in Mat-
lab [27]. Four past release data sets – extracted from the backlog of IRIS application
developed by Multilogic Ltd [23] – were compared against the results of simulations
applying the same inputs [28].

4.1 Context and Methodology

IRIS is a client risk management system (approx. 2 million SLOC) for credit insti-
tutions for analyzing the non-payment risk of clients. It has been continual evolution
since its first release in the middle of 90s. The system was written in Visual Basic and
C# the applied methodology was a custom agile process. The release planning process
were made up of the following steps. First, the project manager used intuitive rule for
selecting User stories from the backlog into a release. Then the team estimated on ev-
ery User story and determined the number and the length of iterations within the release

www.manaraa.com

Bin-Packing-Based Planning of Agile Releases 141

– based on iteration velocity. Finally, the team distributed User stories into iterations
considering priorities and precedences.

4.2 Data Collection and Results

Four data sets (Collateral evaluation, Risk assumption, Ukrainian deal flow I/II – re-
spectively RA − RD) were selected to make a comparison between the algorithmic
method and the manual release planning carried out previously at Multilogic. The RA

data set is used to present the concept in the previous example (Figure 4). All the re-
leases had same project members (6 developers), iteration length (2 weeks), iteration
velocity (30 Story point), domain, customer, and development methodology, but they
were characterized by different User story counts (USC), Iteration counts (IC), Buffer
per releases (BpR) (for contingencies), and delivered Story point per iteration (SPi).
Table 1 summarizes the variables of RA −RD collected with the previously introduced
Serpa website – see Sec. 3.2.

To determine the usefulness of our proposed method, we used historical data as input
of the Binsched algorithm (Algorithm 1). This method made it possible to compare per-
formance of the algorithmic (optimized) approach against the manual one. Computed
values (R∗

A−R∗
D) are shown in Table 2 (since USC, IC, BpR were the same as Table 1

they are not shown).

Table 1. Historical release plan values (RA − RD)

USC IC BpR SP1 SP2 SP3 SP4 SP5
∑ 5

1 SPi

RA 33 4 3.0 28.0 35.0 24.0 30.0 0.0 117.0
RB 25 3 4.5 33.0 34.5 18.0 0.0 0.0 85.5
RC 27 5 12.5 31.5 33.0 23.0 26.0 24.0 137.5
RD 27 4 3.5 29.5 33.0 27.0 27.0 0.0 116.5

4.3 Analysis

The analysis goal was to compare the manual and the optimized approaches using the
same input variables. The following key questions were addressed: Q1: What are the
staffing requirements over time?; Q2: How many iterations do we need per release?;
and Q3: How buffers for contingencies are allocated?

To answer to these questions, 1) we carried out Exploratory Data Analysis (EDA)
[29,30] to gaining insight into the data sets, then 2) we performed descriptive statistical
analysis to compare the main properties of the two approaches.

Qualitative Analysis. The following EDA techniques (called 4P EDA) are simple,
efficient, and powerful for the routine testing of underlying assumptions [29]:

1. run sequence plot (Yi versus iteration i)
2. lag plot (Yi versus Yi − 1)
3. histogram (counts versus subgroups of Y)
4. normal probability plot (ordered Y versus theoretical ordered Y)

www.manaraa.com

142 Á. Szőke

Table 2. Optimized release plan values (R∗
A − R∗

D)

SP∗
1 SP∗

2 SP∗
3 SP∗

4 SP∗
5

R∗
A 30.0 30.0 29.0 28.0 0.0

R∗
B 30.0 28.5 27.0 0.0 0.0

R∗
C 29.5 30.0 30.0 29.0 19.0

R∗
D 29.5 30.0 30.0 27.0 0.0

Fig. 5. 4P of historical (upper) and optimized (lower) plans

where Yi �
∑n

j=1 wjxi,j (i.e. sum of assigned Story point of each iteration (c.f. 1b)
were identified as result variables to test or questions (Q1-3).

The four EDA plots are juxtaposed for a quick look at the characteristics of the data
(Figure 5). The assumptions are addressed by the graphics:

A1: The run sequence plots indicate that the data do not have any significant shifts in
location but have significant differences in variation over time.

A2: The upper histogram depicts that the data are skewed to the left, there do not
appear to be significant outliers in the tails, and it is reasonable to assume the
data are from approximately a normal distribution. Contrary, lower one shows
asymmetricity (skewed to the left heavily), data are more peaked than the normal
distribution. Additionally, there is a limit in the data (30) that can be explained by
the subject of the optimization (c.f. 1b).

A3: The lag plots do not indicate any systematic behavior pattern in the data.
A4: The normal probability plot in upper approximately follows straight lines through

the first and third quartiles of the samples, indicating normal distributions. On the
contrary, normality assumption is in fact not reasonable on the right.

From the above plots, we conclude that there is no correlation among the data (A3),
the historical data follow approximately a normal distribution (A4), and the optimized
approach yields more smooth release padding and less variance (A1,A2).

Quantitative Analysis. Due to A3 data sets could be analyzed with summary (de-
scriptive) statistics (Table 3), and hypothesis test. Table 3 shows important differences
between the historical and optimized data:

www.manaraa.com

Bin-Packing-Based Planning of Agile Releases 143

D1: in the optimized case sample standard deviation is approximately halved, which
supports A1,

D2: despite of the fact that iteration velocity was 30 Story points the release plan pre-
scribed 35 in the historical case which resulted 17% resource overload
(c.f. A2),

D3: relatively large skewness of the optimized case (histogram in Figure 5) can be
interpreted by the capacity constraints of the optimization (see 1b),

D4: relatively large kurtosis of the optimized case (histogram in Figure 5) can be ex-
plained by the subject of the optimization (see 1a).

After statistical analysis, Lilliefors test is carried out to quantify the test of normality
(c.f. A4) at α = 95% significance level: historical data comes from a normal distribution
(H0 : F (Yi) = Θ(Yi)), against the alternative hypothesis (H1 : F (Yi) �= Θ(Yi)).
The result yielded p-value = 0.5 (observed significance level). As p-value> (1 − α)
so historical data follow normal distribution (so H0 was accepted at 95% significance
level). Since the sample was relatively small, the Lilliefors test was adequate [29].

Finally, maximum likelihood estimation (MLE) procedure was accomplished to find
the value of μ (expected value) and σ (standard deviation) parameters of the normal
distribution. The estimation resulted μ = 28.53 and σ = 4.63 values [30].

As a consequence, in the optimized case: staffing requirements (c.f. Q1) showed
more smooth release padding, with less variance and an upper limit, therefore consti-
tuted less risk level regarding resource overload; iteration counts per releases (c.f. Q2)
did not exhibit any differences contrary to the historical data; finally release buffers (c.f.
Q3) were moved from the end of iterations to the end of releases which more advisable
to mitigate risks [31].

5 Discussion and Related Work

Without loss of generality, we have selected User story as the most popular agile re-
quirements modeling technique as a subject of release planning. User stories have many
advantages including i) comprehensible to both customers and the developers, ii) em-
phasize verbal rather than written communication, iii) represent a discrete piece of func-
tionality, iv) work for iterative development, and finally v) right sized for estimating (i.e.
Story points [16]) and planning [9,15].

Table 3. Comparison with descriptive statistics

Mean Min Max Std.dev. Skewness Kurtosis
RA−B 28.53 18.0 35.0 4.78 -0.48 2.50
R∗

A−B 28.53 19.0 30.0 2.75 -2.82 10.35

We applied the popular Story point method to estimate realization duration of each
User story. Up to now, several case studies reported that the Story point is a reliable
method to estimate the required effort at the release planning phase [6,7,16].

We constructed a proposed conceptual model of agile release planning (c.f. Sec. 3.1).
This model not only helped to identify the objects and the subject of the optimization

www.manaraa.com

144 Á. Szőke

model but promoted to implement our prototype of collaborative data collection website
(Sec. 3.2). Moreover it can help in the design of future release planning tools also.

Then we formulated release planning as BPR-RCPSP to provide algorithmic User
story distribution considering i) team’s resource capacity in an iteration and ii) mini-
mizing the number of iteration used scheduling objective. Our proposed BP-RCPSP is
an extension of bin-packing optimization model to cover wide-ranging release planning
situations with the expression of: i) precedences between requirements (c.f. Sec. 2.1),
ii) varying capacities of iterations, and iii) requirements priorities (c.f. P1-3). This inter-
pretation makes it possible to adapt extremely successful heuristic algorithms applied to
solving bin-packing situations. Generally, bin-packing problems are combinatorial NP-
hard problems to which a variety approximation and only a few exact algorithms are
proposed. The most popular heuristics in approximation algorithms are First-Fit (FF),
Next-Fit Decreasing (NFD), First-Fit Decreasing (FFD), where the time complexity is
O(nlogn) – considering the worst-case performance ratio of the algorithm [25].

We developed a bin-packing algorithm (Binsched) for the BP-RCPSP model which
illustrated the iteration capacities are filled more smoothly (c.f. Q1) and release buffers
are adjusted to the end of the last iterations (c.f. Q3) to prevent slippage of schedule
by the optimal usage of buffers [31]. Metrics indicated that the algorithmic approach
balanced the workload by halved the dispersion (coefficient of variation (cv = σ/μ):
chist
v = 0.17 > coptm

v = 0.09) therefore provided less risky release plans besides sat-
isfying the same constraints. Moreover, the easy and fast computation allows the user
to generate alternative selections and what-if analysis to tailor the best plan for the spe-
cific project context and considering the stakeholders’ feedbacks by altering constraints,
capacities and priorities.

The growing pressure to reduce costs, time-to-market and to improve quality cat-
alyzes transitions to more automated methods and tools in software engineering to sup-
port project planning, scheduling and decisions [14]. Scheduling requirements into the
upcoming release version is complex and mainly manual process. In order to deal with
this optimization problem some method have been proposed. Compared to the exten-
sive research on requirements priorization [32,33], interdependencies [20,18], and es-
timation [20], only few researches performed requirements release planning. In [20]
release planning was formulated as Integer Linear Programming (ILP) problem, where
requirement dependencies were treated as precedence constraints. The ILP technique is
extended with stakeholders’ opinions in [34], and with some managerial steering mech-
anism that enabled what-if analysis [35]. In [36] a case study showed that integration of
requirements and planning how significantly (> 50%) can accelerate UML-based re-
lease planning. Although, [37] deals with the specialities of agile methods, it provides
planning support at a lower level, at the level of iterations.

6 Conclusions

Up to our best knowledge, the proposed optimized model formulation of agile release
planning is novel in the field. Although, there are some tenets to manual planning [6,15]
algorithmic solution could not be found. To evaluate our model a simulation was carried
out that demonstrated the method could easily cope with the previously manually man-
aged planning factors i.e. precedences, resource constraints and priorities (c.f. P1-3)

www.manaraa.com

Bin-Packing-Based Planning of Agile Releases 145

besides providing optimized plans. Additionally, this approach provides more informed
and established decisions with application of what-if analysis, and mitigates risks with
more smooth and limited requirements allocation and with moving buffers to the end
of releases. We believe the results are even more impressive in more complex (more of
constraints, user stories etc.) situations.

We think that our proposed method is a plain combination of the present theories and
methods, that is demonstrated by the empirical investigation and the prototypes. It lead
us to generalize our findings beyond the presented experiments.

References

1. Information Systems Audit and Control Association, http://www.isaca.org
2. Organizational PM maturity model, http://www.pmi.org
3. Ambler, S.W.: Best practices for lean development governance. The Rational Edge (2007)
4. Chau, T., Maurer, F., Melnik, G.: Knowledge Sharing: Agile Methods vs. Tayloristic Meth-

ods. In: Proceedings of the 12th IEEE International Workshops on Enabling Technologies,
pp. 302–307. IEEE Press, Los Alamitos (2003)

5. Manifesto for agile software development, http://www.agilemanifesto.org
6. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic re-

view. Information and Software Technology 50(9-10) (2008)
7. Ambler, S.W.: Survey says: Agile works in practice. Dr. Dobb’s Journal (2006),

http://www.ddj.com
8. Layman, L., Williams, L., Cunningham, L.: Motivations and measurements in an agile case

study. Journal of Systems Architecture 52(11) (2006)
9. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn.

Addison-Wesley Professional, Reading (2004)
10. Layman, L., Williams, L., Cunningham, L.: Exploring extreme programming in context: An

industrial case study. In: ADC 2004: Proceedings of the Agile Development Conference, pp.
32–41 (2004)

11. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall PTR,
Upper Saddle River (2001)

12. Palmer, S.R., Felsing, M.: A Practical Guide to Feature-Driven Development. Pearson Edu-
cation, London (2001)

13. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software projects.
Journal of System and Software 81(6) (2008)

14. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: ICSE 2000: Pro-
ceedings of the International Conference on Software Engineering, pp. 35–46. IEEE Press,
Los Alamitos (2000)

15. Cohn, M.: Agile Estimating and Planning. Prentice Hall PTR, NJ (2005)
16. Cohn, M.: User Stories Applied For Agile Software Development. Addison-Wesley, Reading

(2004)
17. Anda, B., Dreiem, H., Sjøberg, D.I.K., Jørgensen, M.: Estimating software development ef-

fort based on use cases - experiences from industry. In: Gogolla, M., Kobryn, C. (eds.) UML
2001. LNCS, vol. 2185, pp. 487–502. Springer, Heidelberg (2001)

18. Li, C., van den Akker, J.M., Brinkkemper, S., Diepen, G.: Integrated requirement selection
and scheduling for the release planning of a software product. In: Sawyer, P., Paech, B.,
Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 93–108. Springer, Heidelberg (2007)

19. Ambler, S.W., Jeffries, R.: Agile modeling: effective practices for extreme programming and
the unified process. John Wiley & Sons, Inc., NY (2002)

http://www.isaca.org
http://www.pmi.org
http://www.agilemanifesto.org
http://www.ddj.com

www.manaraa.com

146 Á. Szőke

20. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Dag, J.N.: An industrial survey of
requirements interdependencies in software product release planning. In: RE 2001: Proceed-
ings of the Fifth IEEE International Symposium on Requirements Engineering, pp. 84–93.
IEEE Press, Los Alamitos (2001)

21. Object Management Group, http://www.uml.org
22. Microsoft SharePoint (2007), http://sharepoint.microsoft.com
23. Multilogic Ltd. homepage, http://www.multilogic.hu
24. Hartmann, S.: Packing problems and project scheduling models: an integrating perspective.

Journal of the Operational Research Society 51 (2000)
25. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations. John

Wiley & Sons, Inc., New York (1990)
26. Schwindt, C.: Resource Allocation in Project Management. Springer, Heidelberg (2005)
27. Mathworks Inc. homepage, http://www.mathworks.com
28. Kellner, M., Madachy, R., Raffo, D.: Software process simulation modeling: Why? what?

how? Journal of Systems and Software 46(2-3) (1999)
29. Martinez, W.L.: Exploratory Data Analysis with MATLAB. Chapman & Hall/CRC, Boca

Raton (2004)
30. Shao, J.: Mathematical Statistics: Exercises and Solutions. Springer, Heidelberg (2005)
31. Tukel, O.I., Rom, W.O., Eksioglu, S.D.: An investigation of buffer sizing techniques in criti-

cal chain scheduling. European Journal of Operational Research 172(2) (2006)
32. Berander, P., Andrews, A.: Requirements Prioritization. In: Engineering and Managing Soft-

ware Requirements, pp. 69–94. Springer, Heidelberg (2005)
33. Karlsson, L., Thelin, T., Regnell, B., Berander, P., Wohlin, C.: Pair-wise comparisons versus

planning game partitioning–experiments on requirements prioritisation techniques. Empiri-
cal Software Engineering 12(1) (2007)

34. Ruhe, G., Saliu, M.: The art and science of software release planning. IEEE Software 22(6)
(2005)

35. van den Akker, M., Brinkkemper, S., Diepen, G., Versendaal, J.: Software product release
planning through optimization and what-if analysis. Information and Software Technol-
ogy 50(1-2) (2008)

36. Szőke, A.: A proposed method for release planning from use case-based requirements. In:
Proceedings of the 34th Euromicro Conference, pp. 449–456. IEEE Press, Los Alamitos
(2008)

37. Szőke, A.: Decision support for iteration scheduling in agile environments. In: Bomarius, F.,
Oivo, M., Jaring, P., Abrahamsson, P. (eds.) PROFES 2009. LNBIP, vol. 32, pp. 156–170.
Springer, Heidelberg (2009)

http://www.uml.org
http://sharepoint.microsoft.com
http://www.multilogic.hu
http://www.mathworks.com

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 147–162, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Method to Measure Productivity Trends during
Software Evolution

Hans Christian Benestad, Bente Anda, and Erik Arisholm

Simula Research Laboratory and University of Oslo
P.O. Box 134, 1325 Lysaker, Norway

{benestad,bentea,erika}@simula.no
http://www.simula.no

Abstract. Better measures of productivity are needed to support software proc-
ess improvements. We propose and evaluate indicators of productivity trends
that are based on the premise that productivity is closely related to the effort re-
quired to complete change tasks. Three indicators use change management data,
while a fourth compares effort estimates of benchmarking tasks. We evaluated
the indicators using data from 18 months of evolution in two commercial soft-
ware projects. The productivity trend in the two projects had opposite directions
according to the indicators. The evaluation showed that productivity trends can
be quantified with little measurement overhead. We expect the methodology to
be a step towards making quantitative self-assessment practices feasible even in
low ceremony projects.

1 Introduction

The productivity of a software organization that maintains and evolves software can
decrease over time due to factors like code decay [1] and difficulties in preserving and
developing the required expertise [2]. Refactoring [3] and collaborative programming
[4] are practices that can counteract negative trends. A development organization
might have expectations and gut feelings about the total effect of such factors and
accept a moderate decrease in productivity as the system grows bigger and more com-
plex. However, with the ability to quantify changes in productivity with reasonable
accuracy, organizations could make informed decisions about the need for improve-
ment actions. The effects of new software practices are context dependent, and so it
would be useful to subsequently evaluate whether the negative trend was broken.

The overall aim for the collaboration between our research group and two com-
mercial software projects (henceforth referred to as MT and RCN) was to understand
and manage evolution costs for object-oriented software. This paper was motivated by
the need to answer the following practical question in a reliable way:

Did the productivity in the two projects change between the baseline period P0 (Jan-
July 2007) and the subsequent period P1 (Jan-July 2008)?

The project RCN performed a major restructuring of their system during the fall of
2007. It was important to evaluate whether the project benefitted as expected from the
restructuring effort. The project MT added a substantial set of new features since the

www.manaraa.com

148 H.C. Benestad, B. Anda, and E. Arisholm

start of P0 and queried whether actions that could ease further development were
needed. The methodology used to answer this question was designed to become part
of the projects’ periodic self-assessments, and aimed to be a practical methodology in
other contexts as well.

Our contribution is i) to define the indicators within a framework that allows for a
common and straightforward interpretation, and ii) to evaluate the validity of the
indicators in the context of two commercial software projects. The evaluation proce-
dures are important, because the validity of the indicators depends on the data at hand.

The remainder of this paper is structured as follows: Section 2 describes current
approaches to measuring productivity, Section 3 describes the design of the study,
Section 4 presents the results and the evaluation of the indicators and Section 5 dis-
cusses the potential for using the indicators. Section 6 concludes.

2 Current Approaches to Measuring Productivity

In a business or industrial context, productivity refers to the ratio of output production
to input effort [5]. In software engineering processes, inputs and outputs are multidi-
mensional and often difficult to measure. In most cases, development effort measured
in man-hours is a reasonable measure of input effort. In their book on software meas-
urement, Fenton and Pfleeger [6] discussed measures of productivity based on the
following definition of software productivity:

effort

size
typroductivi = (1)

Measures of developed size include lines of code, affected components [7], function
points [8-10] and specification weight metrics [11]. By plotting the productivity
measure, say, every month, projects can examine trends in productivity. Ramil and
Lehman used a statistical test (CUSUM) to detect statistically significant changes
over time [12]. The same authors proposed to model development effort as a function
of size:

sizeeffort 10 ⋅β+β= (2)

They suggested collecting data on effort and size periodically, e.g., monthly, and to
interpret changes in the regression coefficients as changes in evolvability. Number of
changed modules was proposed as a measure of size. The main problem with these
approaches is to define a size measure that is both meaningful and easy to collect. This
is particularly difficult when software is changed rather than developed from scratch.

An alternative approach, corresponding to this paper’s proposal, is to focus on the
completed change task as the fundamental unit of output production. A change task is
the development activity that transforms a change request into a set of modifications
to the source components of the system. When software evolution is organized around
a queue of change requests, the completed change task is a more intuitive measure of
output production than traditional size measures, because it has more direct value to
complete a change task than to produce another n lines of code. A corresponding
input measure is the development effort required to complete the change task, referred
to as change effort.

www.manaraa.com

 A Method to Measure Productivity Trends during Software Evolution 149

Several authors compared average change effort between time periods to assess
trends in the maintenance process [13-15]. Variations of this indicator include average
change effort per maintenance type (e.g., corrective, adaptive or enhancive mainte-
nance). One of the proposed indicators uses direct analysis of change effort. However,
characteristics of change tasks may change over time, so focusing solely on change
effort might give an incomplete picture of productivity trends.

Arisholm and Sjøberg argued that changeability may be evaluated with respect to
the same change task, and defined that changeability had decayed with respect to a
given change task c if the effort to complete c (including the consequential change
propagation) increased between two points in time [16]. We consider productivity to
be closely related to changeability, and we will adapt their definition of changeability
decay to productivity change.

In practice, comparing the same change tasks over time is not straightforward, be-
cause change tasks rarely re-occur. To overcome this practical difficulty, developers
could perform a set of “representative” tasks in periodic benchmarking sessions. One
of the proposed indicators is based on benchmarking identical change tasks. For prac-
tical reasons, the tasks are only estimated (in terms of expected change effort) but are
not completed by the developers.

An alternative to benchmarking sessions is using naturally occurring data about
change tasks and adjusting for differences between them when assessing trends in
productivity. Graves and Mockus retrieved data on 2794 change tasks completed over
45 months from the version control system for a large telecommunication system
[17]. A regression model with the following structure was fitted on this data:

)date,size,type,developer(feffortChange = (3)

The resulting regression coefficient for date was used to assess whether there was a time
trend in the effort required to complete change tasks, while controlling for variations in
other variables. One of our proposed indicators is an adaption of this approach.

A conceptually appealing way to think about productivity change is to compare
change effort for a set of completed change tasks to the hypothetical change effort
had the same changes been completed at an earlier point in time. One indicator op-
erationalizes this approach by comparing change effort for completed change tasks to
the corresponding effort estimates from statistical models. This is inspired by Kit-
chenham and Mendes’ approach to measuring the productivity of finalized projects by
comparing actual project effort to model-based effort estimates [18].

3 Design of the Study

The projects, the collected data and the proposed productivity indicators are described
in the following subsections.

3.1 Context for Data Collection

The overall goal of the research collaboration with the projects RCN and MT was to
better understand lifecycle development costs for object-oriented software.

www.manaraa.com

150 H.C. Benestad, B. Anda, and E. Arisholm

MT is mostly written in Java, but uses C++ for low-level control of hardware. RCN
is based on Java-technology, and uses a workflow engine, a JEE application server,
and a UML-based code generation tool. Both projects use management principles
from Scrum [19]. Incoming change requests are scheduled for the monthly releases by
the development group and the product owner. Typically, 10-20 percent of the devel-
opment effort was expended on corrective change tasks. The projects worked under
time-and-material contracts, although fixed-price contracts were used in some cases.
The staffing in the projects was almost completely stable in the measurement period.

Project RCN had planned for a major restructuring in their system during the sum-
mer and early fall of 2007 (between P0 and P1), and was interested in evaluating
whether the system was easier to maintain after this effort. Project MT added a sub-
stantial set of new features over the two preceding years and needed to know if ac-
tions easing further development were now needed.

Data collection is described in more detail below and is summarized in Table 1.

Table 1. Summary of data collection

 RCN MT
Period P0 Jan 01 2007 - Jun 30 2007 Aug 30 2006 - Jun 30 2007
Period P1 Jan 30 2008 - Jun 30 2008 Jan 30 2008 - Jun 30 2008
Change tasks in P0/P1 136/137 200/28
Total change effort in P0/P1 1425/1165 hours 1115/234 hours
Benchmarking sessions Mar 12 2007, Apr 14 2008 Mar 12 2007, Apr 14 2008
Benchmark tasks 16 16
Developers 4 (3 in benchmark) 4

3.2 Data on Real Change Tasks

The first three proposed indicators use data about change tasks completed in the two
periods under comparison. It was crucial for the planned analysis that data on change
effort was recorded by the developers, and that source code changes could be traced
back to the originating change request. Although procedures that would fulfill these
requirements were already defined by the projects, we offered an economic compen-
sation for extra effort required to follow the procedures consistently.

We retrieved data about the completed change tasks from the projects’ change
trackers and version control systems by the end of the baseline period (P0) and by
the end of the second period (P1). From this data, we constructed measures of change
tasks that covered requirements, developers’ experience, size and complexity of the
change task and affected components, and the type of task (corrective vs. non-
corrective). The following measures are used in the definitions of the productivity
indicators in this paper:

− crTracks and crWords are the number of updates and words for the change request
in the change tracker. They attempt to capture the volatility of requirements for a
change task.

− components is the number of source components modified as part of a change task.
It attempts to capture the dispersion of the change task.

www.manaraa.com

 A Method to Measure Productivity Trends during Software Evolution 151

− isCorrective is 1 if the developers had classified the change task as corrective, or if
the description for the change task in the change tracker contained strings such as
bug, fail and crash. In all other cases, the value of isCorrective is 0.

− addCC is the number of control flow statements added to the system as part of a
change task. It attempts to capture the control-flow complexity of the change task.

− systExp is the number of earlier version control check-ins by the developer of a
change task.

− chLoc is the number of code lines that are modified in the change task.

A complete description of measures that were hypothesized to affect or correlate with
change effort is provided in [20].

3.3 Data on Benchmark Tasks

The fourth indicator compares developers’ effort estimates for benchmark change
tasks between two benchmarking sessions. The 16 benchmark tasks for each project
were collaboratively designed by the first author of this paper and the project manag-
ers. The project manager’s role was to ensure that the benchmark tasks were represen-
tative of real change tasks. This meant that the change tasks should not be perceived
as artificial by the developers, and they should cross-cut the main architectural units
and functional areas of the systems.

The sessions were organized approximately in the midst of P0 and P1. All devel-
opers in the two projects participated, except for one who joined RCN during P0. We
provided the developers with the same material and instructions in the two sessions.
The developers worked independently, and had access to their normal development
environment. They were instructed to identify and record affected methods and
classes before they recorded the estimate of most likely effort for a benchmark task.
They also recorded estimates of uncertainty, the time spent to estimate each task, and
an assessment of their knowledge about the task. Because our interest was in the pro-
ductivity of the project, the developers were instructed to assume a normal assign-
ment of tasks to developers in the project, rather than estimating on one’s own behalf.

3.4 Design of Productivity Indicators

We introduce the term productivity ratio (PR) to capture the change in productivity
between period P0 and a subsequent period P1.

The productivity ratio with respect to a single change task c is the ratio between the
effort required to complete c in P1 and the effort required to complete c in P0:

)0P,c(effort

)1P,c(effort
)c(PR = (4)

The productivity ratio with respect to a set of change tasks C is defined as the set of
individual values for PR(c):

}Cc|
)0P,c(effort

)1P,c(effort
{)C(PR ∈= (5)

www.manaraa.com

152 H.C. Benestad, B. Anda, and E. Arisholm

The central tendency of values in PR(C), CPR(C), is a useful single-valued statistic to
assess the typical productivity ratio for change tasks in C:

}Cc|
)0P,c(effort

)1P,c(effort
{central)C(CPR ∈= (6)

The purpose of the above definition is to link practical indicators to a common theo-
retical definition of productivity change. This enables us to define scale-free, compa-
rable indicators with a straightforward interpretation. For example, a value of 1.2
indicates a 20% increase in effort from P0 to P1 to complete the same change tasks. A
value of 1 indicates no change in productivity, whereas a value of 0.75 indicates that
only 75% of the effort in P0 is required in P1. Formal definitions of the indicators are
provided in Section 3.4.1 to 3.4.4.

3.4.1 Simple Comparison of Change Effort
The first indicator requires collecting only change effort data. A straightforward way
to compare two series of unpaired effort data is to compare their arithmetic means:

)0P0c|)0c(effort(mean

)1P1c|)1c(effort(mean
1ICPR

∈
∈

= (7)

The Wilcoxon rank-sum test determines whether there is a statistically significant
difference in change effort values between P0 and P1. One interpretation of this test is
that it assesses whether the median of all possible differences between change effort
in P0 and P1 is different from 0:

)0P0c,1P1c|)0c(effort)1c(effort(medianHL ∈∈−= (8)

This statistic, known as the Hodges-Lehmann estimate of the difference between
values in two data sets, can be used to complement ICPR1. The actual value for this
statistic is provided with the evaluation of ICPR1, in Section 4.1.

ICPR1 assumes that the change tasks in P0 and P1 are comparable, i.e. that there
are no systematic differences in the properties of the change tasks between the peri-
ods. We checked this assumption by using descriptive statistics and statistical tests to
compare measures that we assumed (and verified) to be correlated with change effort
in the projects (see Section 4.2). These measures were defined in Section 3.2.

3.4.2 Controlled Comparison of Change Effort
ICPR2 also compares change effort between P0 and P1, but uses a statistical model to
control for differences in properties of the change tasks between the periods. Regres-
sion models with the following structure for respectively RCN and MT are used:

.1inPisCorrfiletypeschLoccrWords)effortlog(543210 ⋅β+⋅β+⋅β+⋅β+⋅β+β= (9)

.1inP

systExpcomponentsaddCCcrTracks)effortlog(

5

43210

⋅β
+⋅β+⋅β+⋅β+⋅β+β=

 (10)

The models (9) and (10) are project specific models that we found best explained
variability in change effort, c.f. [20]. The dependent variable effort is the reported

www.manaraa.com

 A Method to Measure Productivity Trends during Software Evolution 153

change effort for a change task. The variable inP1 is 1 if the change task c was com-
pleted in P1 and is zero otherwise. The other variables were explained in Section 3.2.
When all explanatory variables except inP1 are held constant, which would be the
case if one applies the model on the same change tasks but in the two, different time
periods P0 and P1, the ratio between change effort in P1 and P0 becomes

.5e
0ß5Var4ß4Var3ß3Var2ß2Var1 ß1ß0e

1ß5Var4ß4Var3ß3Var2ß2Var1 ß1ß0e

)01inP,4Var..1Var(effort

)11inP,4Var..1Var(effort
2ICPR

β=⋅+⋅+⋅+⋅+⋅+

⋅+⋅+⋅+⋅+⋅+
=

=
==

 (11)

Hence, the value of the indicator can be obtained by looking at the regression coeffi-
cient for inP1, β5. Furthermore, the p-value for β5 is used to assess whether β5 is
significantly different from 0, i.e. that the indicator is different from 1 (e0=1).

Corresponding project specific models must be constructed to apply the indicator
in other contexts. The statistical framework used was Generalized Linear Models
assuming Gamma-distributed responses (change effort) and a log link-function.

3.4.3 Comparison between Actual and Hypothetical Change Effort
ICPR3 compares change effort for tasks in P1 with the hypothetical change effort had
the same tasks been performed in P0. These hypothetical change effort values are
generated with a project-specific prediction model built on data from change tasks in
P0. The model structure is identical to (9) and (10), but without the variable inP1.

Having generated this paired data on change effort, the definition (6) can be used
directly to define ICPR3. To avoid over-influence of outliers, the median is used as a
measure of central tendency.

}1Pc|
)c(ffortpredictedE

)c(effort
{medianICPR 3 ∈= (12)

A two-sided sign test is used to assess whether actual change effort is higher (or
lower) than the hypothetical change effort in more cases than expected from chance.
This corresponds to testing whether the indicator is statistically different from 1.

3.4.4 Benchmarking
ICPR4 compares developers’ estimates for 16 benchmark change tasks between P0
and P1. Assuming the developers’ estimation accuracy does not change between the
periods, a systematic change in the estimates for the same change tasks would mean
that the productivity with respect to these change tasks had changed. Effort estimates
made by developers D for benchmarking tasks Cb in periods P1 and P0 therefore give
rise to the following indicator:

}Dd,bCc|
)c,d,0P(estEffort

)c,d,1P(estEffort
{medianICPR 4 ∈∈= (13)

A two-sided sign test determines whether estimates in P0 were higher (or lower) than
the estimates in P1 in more cases than expected from chance. This corresponds to
testing whether the indicator is statistically different from 1.

www.manaraa.com

154 H.C. Benestad, B. Anda, and E. Arisholm

Controlled studies show that judgement-based estimates can be unreliable, i.e. that
there can be large random variations in estimates by the same developer [21]. Collect-
ing more estimates reduces the threat implied by random variation. The available time
for the benchmarking session allowed us to collect 48 (RCN – three developers) and
64 (MT – four developers) pairs of estimates.

One source of change in estimation accuracy over time is that developers may be-
come more experienced, and hence provide more realistic estimates. For project RCN,
it was possible to evaluate this threat by comparing the estimation bias for actual
changes between the periods. For project MT, we did not have enough data about
estimated change effort for real change tasks, and we could not evaluate this threat.

Other sources of change in estimation accuracy between the sessions are the con-
text for the estimation, the exact instructions and procedures, and the mental state of
the developers. While impossible to control perfectly, we attempted to make the two
benchmarking sessions as identical as possible, using the same, precise instructions
and material. The developers were led to a consistent (bottom-up) approach by our
instructions to identify and record affected parts of the system before they made each
estimate.

Estimates made in P1 could be influenced by estimates in P0 if developers remem-
bered their previous estimates. After the session in P1, the feedback from all develop-
ers was that they did not remember their estimates or any of the tasks.

An alternative benchmarking approach is comparing change effort for benchmark
tasks that were actually completed by the developers. Although intuitively appealing,
the analysis would still have to control for random variation in change effort, out-
comes beyond change effort, representativeness of change tasks, and also possible
learning effects between benchmarking sessions.

In certain situations, it would even be possible to compare change effort for change
tasks that recur naturally during maintenance and evolution (e.g., adding a new data
provider to a price aggregation service). Most of the threats mentioned above would
have to be considered in this case, as well. We did not have the opportunities to use
these indicators in our study.

3.5 Accounting for Changes in Quality

Productivity analysis could be misleading if it does not control for other outcomes of
change tasks, such as the change task’s effect on system qualities. For example, if
more time pressure is put on developers, change effort could decrease at the expense
of correctness. We limit this validation to a comparison of the amount of corrective
and non-corrective work between the periods. The evaluation assumes that the change
task that introduced a fault was completed within the same period as the task that
corrected the fault. Due to the short release-cycle and half-year leap between the end
of P0 and the start of P1, we are confident that change tasks in P0 did not trigger fault
corrections in P1, a situation that would have precluded this evaluation.

4 Results and Validation

The indicator values with associated p-values are given in Table 2.

www.manaraa.com

 A Method to Measure Productivity Trends during Software Evolution 155

Table 2. Results for the indicators

 RCN MT
Indicator Value p-value Value p-value
ICPR1 0.81 0.92 1.50 0.21
ICPR2 0.90 0.44 1.50 0.054
ICPR3 0.78 <0.0001 1.18 0.85
ICPR4 1.00 0.52 1.33 0.0448

For project RCN, the analysis of real change tasks indicate that productivity in-
creased, since between 10 and 22% less effort was required to complete change tasks
in P1. ICPR4 indicates no change in productivity between the periods. The project had
refactored the system throughout the fall of 2008 as planned. Overall, the indicators
are consistent with the expectation that the refactoring initiative would be effective.
Furthermore, the subjective judgment by the developers was that the goal of the refac-
toring was met, and that change tasks were indeed easier to perform in P1.

For project MT, the analysis of real change tasks (ICPR1, ICPR2 and ICPR3) indi-
cate a drop in productivity, with somewhere between 18 and 50% more effort to com-
plete changes in P1 compared with P0. The indicator that uses benchmarking data
(ICPR4) supports this estimate, being almost exactly in the middle of this range. The
project manager in MT proposed post-hoc explanations as to why productivity might
have decreased. During P0, project MT performed most of the changes under fixed-
price contracts. In P1, most of the changes were completed under time-and material
contracts. The project manager indicated that the developers may have experienced
more time pressure in P0.

As discussed in Section 3.5, the indicators only consider trends in change effort,
and not trends in other important outcome variables that might confound the results,
e.g., positive or negative trends in quality of the delivered changes. To assess the

Fig. 1. Change effort in RCN, P0 (left) vs. P1 Fig. 2. Change effort in MT, P0 (left) vs. P1

www.manaraa.com

156 H.C. Benestad, B. Anda, and E. Arisholm

validity of our indicators with respect to such confounding effects, we compared the
amount of corrective versus non-corrective work in the periods. For MT, the percent-
age of total effort spent on corrective work dropped from 35.6% to 17.1% between
the periods. A plausible explanation is that the developers, due to less time pressure,
expended more time in P1 ensuring that the change tasks were correctly implemented.
So even though the productivity indicators suggest a drop, the correctness of changes
was also higher. For RCN, the percentage of the total effort spent on corrective work
increased from 9.7% to 15%, suggesting that increased productivity was at the ex-
pense of slightly lesser quality.

4.1 Validation of ICPR1

The distribution of change effort in the two periods is shown in Fig. 1 (RCN) and
Fig. 2 (MT). The square boxes include the mid 50% of the data points. A log scale is
used on the y-axis, with units in hours. Triangles show outliers in the data set.

For RCN, the plots for the two periods are very similar. The Hodges-Lehmann es-
timate of difference between two data sets (8) is 0, and the associated statistical test
does not indicate a difference between the two periods. For MT, the plots show a
trend towards higher change effort values in P1. The Hodges-Lehmann estimate is
plus one hour in P1, and the statistical test showed that the probability is 0.21 that this
result was obtained by pure chance.

If there were systematic differences in the properties of the change tasks between
the periods, ICPR1 can be misleading. This was assessed by comparing values for
variables that capture certain important properties. The results are shown in Table 3
and Table 4. The Wilcoxon rank-sum test determined whether changes in these vari-
ables were statistically significant. In the case of isCorrective, the Fischer’s exact test
determined whether the proportion of corrective change tasks was significantly differ-
ent in the two periods.

For RCN, chLoc significantly increased between the periods, while there were no
statistically significant changes in the values of other variables. This indicates that

Table 3. Properties of change tasks in RCN

Variable P0 P1 p-value
chLoc (mean) 26 104 0.0004

crWords (mean) 107 88 0.89

filetypes (mean) 2.7 2.9 0.50
isCorrective (%) 38 39 0.90

Table 4. Properties of change tasks in MT

Variable P0 P1 p-value
addCC (mean) 8.7 44 0.06

components (mean) 3.6 7 0.09
crTracks (mean) 4.8 2.5 <0.0001
systExp (mean) 1870 2140 0.43

www.manaraa.com

 A Method to Measure Productivity Trends during Software Evolution 157

larger changes were completed in P1, and that the indicated gain in productivity is a
conservative estimate

For MT, crTracks significantly decreased between P0 and P1, while addCC and
components increased in the same period. This indicates that more complex changes
were completed in P1, but that there was less uncertainty about requirements. Be-
cause these effects counteract, it cannot be determined whether the value for ICPR1 is
conservative. This motivates the use of ICPR2 and ICPR3, which explicitly control for
changes in the mentioned variables.

4.2 Validation of ICPR2

ICPR2 is obtained by fitting a model of change effort on change task data from P0 and
P1. The model includes a binary variable representing period of change (inP1) to
allow for a constant proportional difference in change effort between the two periods.
The statistical significance of the difference can be observed directly from the p-value
of that variable. The fitted regression expressions for RCN and MT were:

.1inP10.0veisCorrecti79.0

changed00073.0filetypes2258.0crWords0018.05.9)effortlog(

⋅−⋅
−⋅+⋅+⋅+=

 (14)

.1inP40.0systExp00013.0

components098.0addCC0041.0crTracks088.01.9)effortlog(

⋅+⋅
−⋅+⋅+⋅+=

 (15)

The p-value for inP1 is low (0.054) for MT and high (0.44) for RCN. All the other
model variables have p-values lower than 0.05. For MT, the interpretation is that
when these model variables are held constant, change effort increases by 50%
(e0.40=1.50). A plot of deviance residuals in Fig. 3 and Fig. 4 is used to assess whether
the modelling framework (GLM with gamma distributed change effort and log link
function) was appropriate. If the deviance residuals increase with higher outcomes
(overdispersion) the computed p-values would be misleading. The plots show no sign
of overdispersion. This validation increases the confidence in this indicator for
project MT. For project RCN, the statistical significance is too weak to allow confi-
dence in this indicator alone.

Fig. 3. Residual plot for RCN model (14) Fig. 4. Residual plot for MT model (15)

www.manaraa.com

158 H.C. Benestad, B. Anda, and E. Arisholm

4.3 Validation of ICPR3

ICPR3 compares change effort in P1 with the model-based estimates for the same
change tasks had they been completed in P0. The model was fitted on data from P0.
Fig. 5 shows that actual change effort tends to be higher than estimated effort for MT,
while the tendency is opposite for RCN. For RCN, the low p-value shows that that
actual change effort is systematically lower than the model-based estimates. For pro-
ject MT, the high p-value means that actual effort was not systematically higher.

If the variable subset is overfitted to data from P0, the model-based estimates using
data from P1 can be misleading. To evaluate the stability of the model structure, we
compared the model residuals in the P0 model with those in a new model fitted on
data from P1 (using the same variable subset). For MT, the model residuals were
systematically larger (Wilcoxon rank-sum test, p=0.0048). There was no such trend
for RCN (Wilcoxon rank-sum test, p=0.78), indicating a more stable model structure.

Another possible problem with ICPR3 is that model estimates can degenerate for
variable values poorly covered by the original data set. Inspection of the distributions
for the independent variables showed that there was a potential problem with the
variable chLoc, also indicated by the large difference in mean, shown in Table 3. We
re-calculated ICPR3 after removing the 10 data points that were poorly covered by the
original model, but this did not affect the value of the indicator.

In summary, the validation for ICPR3 gives us high confidence in the result for pro-
ject RCN, due to high statistical significance, and evidence of a stable underlying
model structure. For project MT, the opposite conclusion applies.

Fig. 5. Model estimates subtracted from actual effort

4.4 Validation of ICPR4

ICPR4 is obtained by comparing the estimates that were made in the benchmarking
sessions in P0 and P1. Fig. 6 shows that for project MT, the estimates tended to be
higher in P1 than in P0. For project RCN, there was no apparent difference.

www.manaraa.com

 A Method to Measure Productivity Trends during Software Evolution 159

Fig. 6. Differences in estimates Fig. 7. RCN: Estimates subtracted from actual
effort

A two-sided sign determines whether the differences are positive or negative in

more cases than could be expected by pure chance. For project MT, the low p-value
shows that estimates in P1 are systematically higher than estimates in P0. For project
RCN, the high p-value means that estimates in P1 were not systematically different
from in P0.

A change in estimation accuracy constitutes a threat to the validity of ICPR4. For
example, if developers tended to underestimate changes in P0, experience may have
taught them to provide more relaxed estimates in P1. Because this would apply to real
change tasks as well, we evaluated this threat by comparing estimation accuracy for
real changes between the periods. The required data for this computation (developers’
estimates and actual change effort) was only available for RCN. Fig. 7 shows a differ-
ence in estimation bias between the periods (Wilcoxon rank-sum test, p=0.086).

Changes tended to be overestimated in P0 and underestimated in P1. Hence, the
developers became more optimistic, indicating that ICPR4 can be biased towards a
higher value. This agrees with the results for the other indicators.

In summary, the benchmarking sessions supported the results from data on real
change tasks. An additional result from the benchmarking session was that uncer-
tainty estimates consistently increased between the periods in both projects. The de-
velopers explained this result by claiming they were more realistic in their assess-
ments of uncertainty.

5 Discussion

The described approach to measuring productivity of software processes has some nota-
ble features compared with earlier work in this area. First, rather than searching for
generally valid indicators of productivity, we believe it is more realistic to devise such
indicators within more limited scopes. The targets for the proposed indicators are situa-
tions of software evolution where comparable change tasks were performed during two
time intervals. Second, rather than claiming general validity, we believe it is more pru-
dent to integrate validation procedures with the indicators. Third, our indicators are

www.manaraa.com

160 H.C. Benestad, B. Anda, and E. Arisholm

flexible within the defined scope, in that the structure of the underlying change effort
models can vary in different contexts.

In a given project context, it may not be obvious which indicator will work best.
Our experience is that additional insight was gained about the projects from using and
assessing several indicators. The three first indicators require that data on change
effort from individual change tasks is available. The advantage of ICPR1 is that data
on change effort is the only requirement for data collection. The caveat is that addi-
tional quantitative data is needed to assess the validity of the indicator. If this data is
not available, a development organization may choose to be more pragmatic, and
make qualitative judgments about potential differences in the properties of change
tasks between the periods.

ICPR2 and ICPR3 require projects to collect data about factors that affect change
effort, and that statistical models of change effort are established. To do this, it is
essential to track relationships between change requests and code changes committed
to the version control system. Furthermore, the models should be based on variables
that it is meaningful to control for in the analysis. Although we controlled for differ-
ences in developer experience in one of our models, a given project could choose to
not control for changes to such an attribute. Hence, the interpretation of the indicators
is dependent on the actual variables used in the models. Whenever possible, variables
that characterize the change request at the level of its requirements should be in-
cluded, rather than considering code-oriented variables only.

One advantage of ICPR3 is that any type of prediction framework can be used to
establish the initial model. For example, data mining techniques such as decision trees
or neural networks might be just as appropriate as multiple regression. Once the mod-
el is established, spreadsheets can be used to generate the estimates, construct the
indicator and perform the associated statistical test.

ICPR2 relies on a statistical regression model fitted on data from the periods under
consideration. This approach better accounts for underlying changes in the cost driv-
ers between the periods, than does ICPR3. In organizations with a homogenous proc-
ess and a large amount of change data, the methodology developed by Graves and
Mockus could be used to construct the regression model [17]. With their approach,
data on development effort need only be available on a more aggregated level (e.g.,
monthly), and relationships between change requests and code commits need not be
explicitly tracked.

ICPR4 most closely approximates the hypothetical measure of comparing change
effort for identical change tasks. However, it can be difficult to design benchmarking
tasks that resemble real change tasks, and to evaluate whether changes in estimation
accuracy have affected the results. If the benchmarking sessions are organized fre-
quently, developers’ recollection of earlier estimates would constitute a validity
threat.

As part of our analysis, we developed a collection of scripts to retrieve data,
construct basic measures and indicators, and produce data and graphics for the evalua-
tion. This means that it is straightforward and inexpensive to continue to use the indi-
cators in the studied projects. It is conceptually straightforward to streamline the
scripts so that they can be used with other data sources and statistical packages.

www.manaraa.com

 A Method to Measure Productivity Trends during Software Evolution 161

6 Conclusions

We conducted a field study in two software organizations to measure productivity
changes between two time periods, using a new method that assumed that productiv-
ity during software evolution is closely related to the effort required to complete
change tasks. Three of the indicators used the same data from real change tasks, but
different methods to control for differences in the properties of the change tasks. The
fourth indicator compared estimated change effort for a set of benchmarking tasks
designed to be representative of real change tasks.

The indicators suggested that productivity trends had opposite directions in the two
projects. It is interesting that these findings are consistent with major changes and
events in the two projects. Instead of claiming general validity of the indicators, eval-
uation procedures for specific data sets are provided.

 The paper makes a contribution towards the longer term goal of using methods
and automated tools to assess trends in productivity during software evolution. We
believe such methods and tools are important for software projects to assess and op-
timize development practices.

Acknowledgements. We thank Esito AS and KnowIT Objectnet for providing us
with high quality empirical data, and the Simula School of Research and Innovation
for funding the research.

References

1. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., Mockus, A.: Does Code Decay? Assess-
ing the Evidence from Change Management Data. IEEE Transactions on Software Engi-
neering 27(1), 1–12 (2001)

2. DeMarco, T., Lister, T.: Human Capital in Peopleware. Productive Projects and Teams,
pp. 202–208. Dorset House Publishing (1999)

3. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Transactions on Software
Engineering 30(2), 126–139 (2004)

4. Dybå, T., Arisholm, E., Sjøberg, D.I.K., Hannay, J.E., Shull, F.: Are Two Heads Better
Than One? On the Effectiveness of Pair Programming. IEEE Software 24(6), 12–15 (2007)

5. Tonkay, G.L.: Productivity in Encyclopedia of Science & Technology. McGraw-Hill, New
York (2008)

6. Fenton, N.E., Pfleeger, S.L.: Measuring Productivity in Software Metrics, a Rigorous &
Practical Approach, pp. 412–425 (1997)

7. Ramil, J.F., Lehman, M.M.: Cost Estimation and Evolvability Monitoring for Software
Evolution Processes. In: Proceedings of the Workshop on Empirical Studies of Software
Maintenance (2000)

8. Abran, A., Maya, M.: A Sizing Measure for Adaptive Maintenance Work Products. In: Pro-
ceedings of the International Conference on Software Maintenance, pp. 286–294 (1995)

9. Albrecht, A.J., Gaffney Jr., J.E.: Software Function, Source Lines of Code, and Develop-
ment Effort Prediction: A Software Science Validation. IEEE Transactions on Software
Engineering 9(6), 639–648 (1983)

10. Maya, M., Abran, A., Bourque, P.: Measuring the Size of Small Functional Enhancements
to Software. In: Proceedings of the 6th International Workshop on Software Metrics (1996)

www.manaraa.com

162 H.C. Benestad, B. Anda, and E. Arisholm

11. DeMarco, T.: An Algorithm for Sizing Software Products. ACM SIGMETRICS Perform-
ance Evaluation Review 12(2), 13–22 (1984)

12. Ramil, J.F., Lehman, M.M.: Defining and Applying Metrics in the Context of Continuing
Software Evolution. In: Proceedings of the Software Metrics Symposium, pp. 199–209
(2001)

13. Abran, A., Hguyenkim, H.: Measurement of the Maintenance Process from a Demand-
Based Perspective. Journal of Software Maintenance: Research and Practice 5(2), 63–90
(1993)

14. Rombach, H.D., Ulery, B.T., Valett, J.D.: Toward Full Life Cycle Control: Adding Main-
tenance Measurement to the Sel. Journal of Systems and Software 18(2), 125–138 (1992)

15. Stark, G.E.: Measurements for Managing Software Maintenance. In: Proceedings of the
1996 International Conference on Software Maintenance, pp. 152–161 (1996)

16. Arisholm, E., Sjøberg, D.I.K.: Towards a Framework for Empirical Assessment of
Changeability Decay. Journal of Systems and Software 53(1), 3–14 (2000)

17. Graves, T.L., Mockus, A.: Inferring Change Effort from Configuration Management Data-
bases. In: Proceedings of the 5th International Symposium on Software Metrics, pp. 267–273
(1998)

18. Kitchenham, B., Mendes, E.: Software Productivity Measurement Using Multiple Size
Measures. IEEE Transactions on Software Engineering 30(12), 1023–1035 (2004)

19. Schwaber, K.: Scrum Development Process. In: Proceedings of the 10th Annual ACM
Conference on Object Oriented Programming Systems, Languages, and Applications,
pp. 117–134 (1995)

20. Benestad, H.C., Anda, B., Arisholm, E.: An Investigation of Change Effort in Two Evolv-
ing Software Systems. Technical report 01/2009, Simula Research Laboratory (2009)

21. Grimstad, S., Jørgensen, M.: Inconsistency of Expert Judgment-Based Estimates of Soft-
ware Development Effort. Journal of Systems and Software 80(11), 1770–1777 (2007)

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 163–179, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Design Pattern Detection in Java Systems: A Dynamic
Analysis Based Approach

Francesca Arcelli1, Fabrizio Perin2, Claudia Raibulet1, and Stefano Ravani1

1 Università degli Studi di Milano-Bicocca, Dipartimento di Informatica Sistemistica e
Comunicazione, Viale Sarca 336, Edificio U14, 20126, Milan, Italy

{arcelli,raibulet}@disco.unimib.it,stefano.ravani@gmail.com
http://essere.disco.unimib.it

2 University of Berne, Institute of Computer Science and Applied Mathematics
Software Composition Group, Neubrűckstrasse 10, Bern, Switzerland

perin@iam.unibe.ch
http://scg.unibe.ch

Abstract. In the context of reverse engineering, the recognition of design pat-
terns provides additional information related to the rationale behind the design.
This paper presents our approach to the recognition of the behavioral design
patterns based on dynamic analysis of Java software systems. The idea behind
our solution is to identify a set of rules capturing information necessary to iden-
tify a design pattern instance. Rules are characterized by weights indicating
their importance in the detection of a specific design pattern. The core behavior
of each design pattern may be described through a subset of these rules forming
a macrorule. Macrorules define the main traits of a pattern. JADEPT (JAva DE-
sign Pattern deTector) is our software for design pattern identification based on
this idea. It captures static and dynamic aspects through a dynamic analysis of
the software by exploiting the JPDA (Java Platform Debugger Architecture).
The extracted information is stored in a database. Queries to the database im-
plement the rules defined to recognize the design patterns. The tool has been
validated with positive results on different implementations of design patterns
and on systems such as JADEPT itself.

Keywords: Reverse engineering, Design pattern detection, Rules, Dynamic
analysis, Java.

1 Introduction

The usefulness of design patterns in forward engineering is well-known. They guarantee
the creation of transparent structures which allow software to be easily understood,
extended, and reused. The description of design patterns [11] provides information
about the structure, the participant’s roles, the interaction between participants and,
above all, the intent for which they should be used.

In the context of reverse engineering, information related to the presence of a pat-
tern is useful to understand not only the code, but to realize also the concepts behind
its design. This has a significant implication for further improvement or adaptive
changes on a software system. Implicitly, it leads to an enhancement of the life cycle

www.manaraa.com

164 F. Arcelli et al.

with lower maintenance costs. For the design pattern detection, it is possible to use
different approaches both for the identification logic (e.g., searching for subcompo-
nents of design patterns, identifying the entire structure of a design pattern at once)
and for the information extraction method (e.g., static, dynamic, or both). Static
analysis [18, 26] consists in the analysis of data gathered directly from source code or,
if possible, from compiled code [7]. Dynamic analysis [15, 30] deals with data ob-
tained during the execution of a system, gathered by means of third party applications
as debuggers or monitoring interfaces. Hybrid approaches identify statically the main
candidates to be considered as implementations of design patterns and they exploit
dynamic analysis to verify their actual existence [17]. Alternative solutions identify
the structural characteristics of design patterns through the static analysis and the
behavioral aspects through dynamic analysis [14, 29].

One of the advantages of using static analysis is the complete coverage of the soft-
ware under examination. This is not always achieved through dynamic analysis. On
the other hand, by exploiting static analysis, it is not possible to determine properly
the behavior of a system. One of the advantages of using dynamic analysis is the
capability to monitor each of the functionalities of a software independently of the
others. In this way it is possible to consider a smaller part of code to increase preci-
sion and limit false positive or false negative results.

Problems raised by the identification of design patterns are related not only to the
search aspect, but also to design and development choices. There are at least three
important decisions that should be taken when developing a pattern detection tool.
These decisions may influence significantly the final results. The first issue regards
the evaluation of how to extract the interesting data from the examined software,
including the type of the analysis to be performed. The second issue considers the
data structure in which to store the gathered information: it may not model in a proper
way the aspects of the software under investigation. The most important risk is related
to the loss of knowledge at the data or the semantic level: this would generate
inferences about something that is no more the analyzed software, but an incorrect
abstraction of it. The third one highlights the importance to find a way to process the
extracted data and to identify design pattern instances. Independently of the adopted
data structure for the extracted information (e.g., a text file, XML, database), the fol-
lowing three issues should be considered: memory occupation, processing rate and,
most important, the effective recognition process of design patterns with a minimum
rate of false positives and false negatives. While the first two issues could be solved
through an upgrade of the machine on which elaboration is performed, the last is
strictly related to the efficiency of the recognition logic applied for design pattern
detection due to the significant number of possible implementation variants.

In this paper, we present a new approach based on dynamic analysis to detect be-
havioral design patterns. We define a set of rules describing the properties of each
design pattern. Properties may be either structural or behavioral and may define rela-
tionships between classes or families of classes. We define a family of classes as a
group of classes implementing the same interface or extending a common class.
Weights have been associated to rules indicating how much a rule is able to describe a
specific property of a given design pattern. Rules have been written after we have
deeply studied the books on design patterns of [11] and [8], evaluated different im-
plementations of patterns, and implemented ourselves various variants of patterns.

www.manaraa.com

 Design Pattern Detection in Java Systems: A Dynamic Analysis Based Approach 165

JADEPT (JAva Design Pattern deTector) is the software prototype we have devel-
oped for design pattern detection based on these rules. An early version of JADEPT
has been presented in [3, 4]. JADEPT collects structural and behavioral information
through dynamic analysis of Java software by exploiting JPDA (Java Platform De-
bugger Architecture). Nevertheless part of the extracted information can be obtained
by a static analysis of the software, JADEPT extracts all the information during the
execution of the software adopting an approach based exclusively on dynamic analy-
sis. The extracted information is stored in a database. The advantages of keeping
information stored in database are: (1) the possibility to perform statistics and (2) the
possibility to memorize information about various executions of the same software. A
rule may be implemented by one or more queries. The presence of a design pattern is
verified through the validation of its associated rules.

There are various approaches that aim to detect design patterns based on a static
analysis of source code such as: FUJABA RE [18], [19], SPQR [25], [26], PINOT
[24], PTIDEJ [13] or MAISA [28]. They adopt different detection techniques such as
for example the search for information defining an entire pattern [13], the search for
sub-elements of patterns which can be combined to build patterns [2] or the evalua-
tion of the similarity of the code structure with higher-level models (e.g., UML dia-
grams [5] or graph representations [27]). Other approaches exploit both static and
dynamic analysis as in [1], [6], [10], [14], [22] or only dynamic analysis as in [23],
[29]. There are also several tools performing dynamic analysis of Java applications
[9], [12], [31], but their main objective is not to identify design patterns. For example,
Caffeine [12] is a dynamic analyzer for Java code which may be used also to support
design patterns detection. The comparison of the different approaches exploiting dy-
namic analysis or both static and dynamic analysis is difficult to achieve since a stan-
dard benchmark for comparing design pattern detection tools is not yet available.

The rest of the paper is organized as follows. Section 2 describes our approach to
design pattern detection based on rules and macrorules. Section 3 presents the rules
and macrorules for three of the behavioral design patterns. The software implement-
ing our approach is introduced in Section 4. Section 5 describes several aspects con-
cerning the validation of JADEPT. Conclusions and further work are dealt with in
Section 6.

2 A Rule Based Approach for Design Pattern Detection

We aim to develop a new approach for design pattern detection exploiting dynamic
analysis. This kind of analysis allows the monitoring of the Java software at runtime,
thus it is strictly related to the behavior of the system under analysis. A set of rules
capturing the dynamic properties of design patterns and the interactions among
classes and/or interfaces of design patterns are necessary for the detection of patterns
through dynamic analysis. Our identification rules consider those static aspects which
provide information further exploited in dynamic rules. For example, to check the
existence of a particular behavior, it is necessary to verify in the software under
analysis the presence of a method having a specific signature. We consider behavioral
design patterns because they are particularly appropriate for dynamic analysis. In fact,
their traces may be better revealed at runtime by analyzing all the dynamic aspects
including: object instantiation, accessed/modified fields, method calls flows.

www.manaraa.com

166 F. Arcelli et al.

In the first step of our work, the identification rules have been written using the
natural language. This approach avoids introducing constraints regarding the imple-
mentation of rules. In JADEPT, rules are translated into queries, but they can be used
also outside the context of our tool and hence, represented through a different para-
digm (e.g., graphs).

In the second step weights have been added to the rules. Weights denote the impor-
tance of a rule in the pattern detection process. Weights’ range is 1 to 5. These values
are used to compute the probability score indicating the probability of the presence of
a pattern instance. A low weight value denotes a rule that describes a generic charac-
teristic of a pattern as the existence of a reference or a method with a specific signa-
ture. A high weight value denotes a rule that describes a specific characteristic of a
pattern as a particular method call chain linking two class families.

Even if each behavioral design pattern has its own particular properties, an abso-
lute scale for the weights value has been defined. Rules whose weight value is equal
to 1 or 2 describe structural and generic aspects of code (e.g., abstract class inheri-
tance, interface implementation or the presence of particular class fields). Rules
whose weight value is equal to 3 or higher, describe a specific static or dynamic prop-
erty of a pattern. For example, the fifth rule of Chain of Responsibility in Table 1,
specifics that each call to the handle() method has always the same caller-callee ob-
jects pair. This is the way objects are linked in the chain. A weight whose value is
equal to 5 describes a native implementation of the design pattern we are considering
(see Table 3). The weights of rules are used to determine the probability of the pattern
presence in the examined code.

The next step regarded the definition of the relationship between rules [21]. There
are two types of relationships. The first one is logical: if the check of a rule does not
have a positive value, it does not make sense to proof the rules related to it. For ex-
ample, the fifth rule of Chain of Responsibility in Table 1 cannot be proved if the
fourth rule has not been proved first. The second one is informative: if a rule depends
on another one, and the latter is verified by the software detector, its weight increases.
The second type of relationship determines those rules which are stronger for the
identification of design patterns.

Finally, we have introduced macrorules. A macrorule is a set of rules which de-
scribes a specific behavior of a pattern. If the rules that compose a macrorule are
verified, the core behavior of a pattern has been detected so the final probability value
increases. The value added to the probability is different for each pattern because the
number of rules which belong to a macrorule varies from one macrorule to another.

3 Detection Rules for Design Patterns

We provide the detection rules and macrorules for three examples of behavioral
design patterns: Chain of Responsibility, Observer, and Visitor. For further details
related to the detection of the other behavioral design patterns refer to [20], [21].

3.1 Detection Rules for the Chain of Responsibility Design Pattern

The rules we have defined for the Chain of Responsibility are shown in Table 1. In
the first column we assign a unique identifier to the rule in the context of a specific

www.manaraa.com

 Design Pattern Detection in Java Systems: A Dynamic Analysis Based Approach 167

design pattern. The second column contains a textual description of each rule. In the
third column are indicated the weights associated to each rule. A question mark after a
weight value indicates a variable weight. For example, the rule 6 has a variable
weight because of its relation with rule 4 and 5. If these two rules are verified then the
weight of rule 6 is increased by one, hence associating a higher probability to the
pattern instance recognition.

The fourth column indicates the type of information needed to verify a rule. If a
rule describes a static property, which can be verified through an analysis of static
information, then the value in this column is S (static). If a rule describes a dynamic
property, which can be verified through an analysis of dynamic information, then the
value in this column is D (dynamic). In the case we have to verify a property by per-
forming analysis of static and dynamic information, then the value specified is S-D
(static and dynamic). However, in JADEPT both static and dynamic information are
extracted through a dynamic analysis of the software under inspection.

A relationship among two or more rules is indicated in the fifth column of Table 1.
For this pattern it is important to identify clues which capture its chain structure

and behavior.
Rules 1 and 2 require that chain classes must implement a common interface or ex-

tend a common class. For the Chain of Responsibility pattern the common
class/interface must declare a method for sending a request to its successor in the
chain. In the following we call this method handle().

Rule 3 claims for the presence in each chain class of a field whose type is the im-
plemented interface or the extended class. At runtime, this reference indicates the
successor of an instance in the chain, and it is used to call the handle() method. This
reference is assigned to the successor during execution and it is used to call the han-
dle() method.

Rule 4 is verified if the interface or considered class declares a method which can
be a handle() method. Rules 3 and 4 are preconditions for the fifth rule. These rules
define the Chain of Responsibility peculiar behavior.

Rule 5 specifies that each object in the chain must always be called by the same
object, which is its predecessor if objects are unchanged during execution. In fact,
each time a request management is needed, if the chain elements have not been modi-
fied, the chain is preserved

Eventually, rule 6 checks if the name of the common interface or common class
contains the chain or handle string.

A logical dependency is between rule 4 and 5. Rule 5 cannot be proved if rule 4 is
not previously verified.

The informative dependency we have defined for this pattern involves the 4th, 5th
and 6th rules. Rule 6 can increment by one its weight if rules 4 and 5 are verified.

The macrorule for this pattern is called sequential redirection (see Table 2).
The macrorule includes the rules that describe the core of the Chain of Responsibly

pattern. If rules 4 and 5 are checked the macrorule is verified. This means that code
satisfies the basic criteria for the recognition of this pattern. If the macrorule is
proved, the total probability score increases. This score indicates the confidence
of the presence of the Chain of Responsibility in the examined software.

www.manaraa.com

168 F. Arcelli et al.

Table 1. Detection Rules for the Chain of Responsibility Design Pattern

Table 2. The Macrorule for the Chain of Responsibility Design Pattern

3.2 Detection Rules for the Observer Design Pattern

The rules we have defined for the Observer design pattern are shown in Table 3.
Rule 1 requires that both the Observer and Subject should implement an interface.

In this pattern the presence of an interface is fundamental in order to allow the incre-
ment of the number of the Observers and Subjects.

Rule 2 specifies that a Concrete Subject should have a field to store all Observers
interested in its changes.

Rule 3 is verified if an Observer has a reference to the Subject whose changes are
interesting for it. This reference is used to get the new states of the Subject when
modifications occur. In the native interface this field is not required because the Sub-
ject passes itself as a parameter to the update method of the Observer [16].

Rules 4 and 5 claim for the presence of two methods of the Subject that have a pa-
rameter of the same type of the Observers. These rules have the purpose to identify
the Subject's attach and detach methods used by Observers to register or unregister
their interest in a Subject's changes.

Rule 6 highlights the interaction between the Subject's notification method and the
Observer's update method.

Rule 7 specifies that there should be an interaction between the update method of
the Observer and a getter method of the Subject. If rules 4 and 6 are not verified, then
it is impossible to identify the complete interaction between an Observer and a Sub-
ject. In Fig. 1 it is shown a sample of a complete interaction between a Subject and
the Observers after a Subject's modifications (as defined by [11]).

www.manaraa.com

 Design Pattern Detection in Java Systems: A Dynamic Analysis Based Approach 169

Table 3. Detection Rules for the Observer Design Pattern

Fig. 1. Subject-Observer interaction

The last two rules identify an implementation of the Observer pattern using the na-
tive interfaces defined in Java. Rule 8 claims the presence of one or more classes that
implement the native Observable interface. Those classes are considered as Subjects.
Rule 9 requires that one or more classes implement the native interface Observer.
These classes are considered as Observers.

The informative dependency we have defined for this pattern involves the 5th, 6th
and 7th rules. Rule 5 gets an increment if rule 2 is verified. It means that a collection
of references of objects of the same type has been identified. Rules 6 and 7 increment
their weights if rules 2 and 4 are verified. It means that a method which populates the
collection that verifies the rule 2 has been also exposed.

www.manaraa.com

170 F. Arcelli et al.

In Table 4 are summarized the two macrorules for the Observer design pattern.
The first macrorule is called Observer/Subject interaction. It describes the main

characteristic of the Observer pattern that is the interaction between an Observer and a
Subject when the latter modifies its state. The second macrorule is called Observer in
Java. It is verified if an implementation of the Observer pattern using the Java native
interfaces is detected [16].

Table 4. The Macrorule for the Observer Design Pattern

3.3 Detection Rules for the Visitor Design Pattern

The rules we have defined for the Visitor design pattern are shown in Table 5.
Rule 1 requires two families of classes, each implementing an interface. Using an

interface instead of an abstract class makes the structure easier to modify by adding
new elements. However, an implementation of the pattern using abstract classes is not
restrictive to validate the other rules.

Rule 2 and 3 are verified if it is possible to identify a visit() candidate method and
an accept() candidate method. These methods are searched in the interfaces (or ab-
stract classes) specified in the first rule.

Rule 4 has the purpose to identify the Client, which is the owner of the objects that
have to be investigated by the Visitor. For the other patterns the Client has not been
taken into account (playing a secondary role), but in this case it has been necessary to
consider it. During the analysis of different pattern implementations it became obvi-
ous that using the native interface Iterable or implementing the pattern manually, a
class out of both families described in rule 1 was the owner of the structure that has to
be visited. The second part of the rule aims to identify a relation between accesses to
the structure that is visited and the method that implements the iteration.

Rule 5 tries to distinguish the Visitor from the Observer pattern. The problem is
that the interaction between the accept() and visit() in the Visitor and the interaction
between notify() and update() in the Observer could be misunderstood. The difference
is that in the Observer, the Subject's and the Observer's instances are usually assigned
in the constructor. In the Visitor implementation instead the relation between the
structure Visitor and Element is build on the fly through methods’ parameters.

Rule 6 highlights the core behavior of the Visitor by defining which sequence of
invocations should be verified at run-time. The rule claims that the accept() candidate
method should be called after an invocation of the visitor() candidate method and that
the visit() method has to receive as parameter the reference to the object containing
Rule 7 describes the interaction which is verified after the typical scenario described
the element which should be analyzed. In Fig. 2 it is shown an example of the interac-
tion among the Visitor’s participants (as defined by [11]). by rule 6. This rule is veri-
fied if after the interaction in rule 6 there is an invocation to a method (typically a
getter) defined in the Element participant.

www.manaraa.com

 Design Pattern Detection in Java Systems: A Dynamic Analysis Based Approach 171

Table 5. Detection Rules for the Visitor Design Pattern

Table 6. The Macrorule for the Observer Design Pattern

Fig. 2. The Visitor’s Participants Interaction

In Table 6 it is described the macrorule for the Visitor design pattern.
The macrorule is called handshake and it highlights which rules are involved in the

description of the behavior of this design pattern. In particular rules 2 and 3 are vali-
dated if it is possible to identify an accept() and a visitor() method. Rules 5 and 6
describe the interaction between those methods.

www.manaraa.com

172 F. Arcelli et al.

4 A Java Design Pattern Detector

JAva DEsign Pattern deTector is a Java application composed of four main modules:
Graphic User Interface (GUI), Launcher and Capture Module (LCM), Design Pattern
Detector Module (DPDM) and JDEC Interface Module (see Fig. 3).

JADEPT's GUI allows users: (1) to set up a JADEPT XML configuration file, (2)
to launch the software to be monitored, (3) to start the analysis on the stored informa-
tion and (4) to create the JDEC database.

Fig. 3. JADEPT Architecture

The Capture and Launcher Module is composed of (1) the Launcher, which starts
the execution of the software under analysis and the execution of the Catcher Module,
and (2) the Catcher, which captures events occurred in the JVM created by the
Launcher for the analyzed software. Events regard classes and interfaces loading,
method calls, field accesses and modifications. Through these events JADEPT ex-
tracts various types of information exploited in the detection process.

During the analyzed software execution the Catcher Module writes the XML Re-
port File containing all the collected information and, at the end of analyzed software
execution it invokes the Communication Layer insertion method. Thus, the XML
Report File is inserted in the JDEC database. In this way, information is available to
the Design Pattern Detector Module (DPDM).

The Communication Layer represents the link between JDEC and the other
software modules. Its functions are provided by XML2DBTranslator and Query Gen-
erator. XML2DBTranslator interprets the XML Report File created by the Catcher
Module and creates inserting queries to fill JDEC. The Query Generator is used dur-
ing the analysis phase to create the appropriate queries.

The Design Pattern Detector Module is composed of: the Design Pattern Recog-
nizer, the Result and Metric Information Dispenser (ReMInD) and the Result Writer.
The Design Pattern Recognizer contains the classes used in the detection process. Each
class defines a thread representing a specific pattern role and each thread performs the

www.manaraa.com

 Design Pattern Detection in Java Systems: A Dynamic Analysis Based Approach 173

analysis on a class family. A thread checks the rule on the family assigned to it and
writes the results on an object metaphorically called whiteboard [20]. The ReMInD
module provides objects which support the analysis threads. Each object is a white-
board used by a thread to store information about temporary results obtained during the
analysis. The Result Writer receives results coming from the Design Pattern Recog-
nizer and it disposes them into an output file, called Result File. The last is divided into
various sections each of them referring to a different pattern. For more details on
JADEPT see [3, 4, 20].

5 Experimental Results with JADEPT

JADEPT has been validated using different implementation samples of design patterns
more or less closer to their GoF's definitions [11]. The results of the analysis on differ-
ent implementations of design patterns are shown in Tables 7, 8 and 9 and are related to
the detection of three of the behavioral design patterns: Chain of Responsibility, Ob-
server and Visitor. Table 10 shows the results of JADEPT that analyzes itself.

The first column of each table contains the identification name for the implementa-
tions considered. The remaining columns show the results provided by the Chain of
Responsibility, Observer and Visitor detectors. The `-' symbol means that JADEPT
has not detected any instance for a given design pattern. The `X' symbol indicates that
the considered sample does not provide any implementation of a specific pattern.

Table 7 illustrates the results obtained during the detection of Chain of Responsi-
bility. The second column indicates the results obtained through the Chain of Respon-
sibility detector, while column three and four the results obtained through the
Observer and Visitor detectors. The last two detectors have been used to verify if they
provide false positives. The same approach has been applied in Table 8 and Table 9.

JADEPT recognizes the Chain of Responsibility pattern in three implementations
with reliable values. The Chain implementation in fluffycat is detected as a false
negative because JADEPT is not able to find a good handle() candidate in this pattern
instance. This argument indicates the request that should be managed by one of the
classes which implements the interface. Moreover, each class implementing the inter-
face declares a field whose type is the type of the common interface. The successor
element in the chain is assigned to this field during execution.

Fig. 4 shows the class diagram related to the implementation of the Chain of Re-
sponsibility in the fluffycat example. According to the GoF’s definition, this pattern
should define a common interface (e.g., called Chain) which is implemented further
by two or more classes. The interface defines a method (e.g., called sendTo-
Chain(String)) which accepts only one argument.

The fluffycat implementation is not closed to the GOF's definition: it defines a
common interface called TopTitle, but this interface declares methods which accept
no arguments. One of the purposes of the Chain of Responsibility pattern is to build a
structure which is able to handle requests generated by a sender. Hence, it is not pos-
sible that the handle() method accepts no parameters. Moreover, the three classes do
not declare any field for a successor whose type is the interface type. DvdCategory-
Class does not declare any field which indicates a reference to its successor. The
DvdSubCategory class declares a field of DvdSubSubCategory type. The instances of

www.manaraa.com

174 F. Arcelli et al.

these classes can be chained only in one way: the knowledge indicating which object
must be used as a successor of another is built-in the classes and not in an external
class which should define how the chain must be created. Hence, such an implementa-
tion is unacceptable and does not comply with the GoF's definition. This is reflected
in the low values associated to the fluffycat implementation in Table 7.

The Observer and Visitor detectors obtain satisfying results. There are cases (e.g.,
earthlink, fluffycat and kuchana) in which detectors have not even start their analysis
due to the absence of a common class or interface in these implementation instances.
Moreover, the Chain structure is deeply different from the Observer and Visitor struc-
tures. It requires only one role, while the Observer and Visitor require two. This is the
main reason why the two detectors cannot perform the analysis. In the Observer and
Visitor implementations of the cooper sample it is revealed a Chain instance with a
very low probability score, hence it cannot be even considered significant.

Table 7. Chain of Responsibility implementation analyzed by three design pattern detectors

Fig. 4. Class Diagram for the Chain of Responsibility Pattern in fluffycat

The results of the detection of the Observer pattern are shown in Table 8. The Ob-
server detector provides significant results for kuchana and cooper implementations.
It obtains false negative values for earthlink2 and sun implementations and it does not
provide any result for earthlink and fluffycat. The reason why the Observer detector
cannot perform the analysis is related to the correctness of the implementations and
to how JADEPT partitions the software system under examination to perform

www.manaraa.com

 Design Pattern Detection in Java Systems: A Dynamic Analysis Based Approach 175

analysis. Even if Observer and Visitor are similar, the Visitor detector provides low
score false positive results. The highest values were obtained for kuchana and sun and
cooper implementations. It may be possible that the notify() and update() methods are
considered by the static rules as accept() and visit() candidates. The fluffycat imple-
mentation cannot be analyzed due to the lack of the common classes/interfaces. The
Chain of Responsibility detector provides very low probability scores, and also it
cannot analyze the fluffycat implementation.

Table 9 shows the results obtained during the detection of the Visitor pattern. The
Visitor detector provides satisfying results for five implementations. The Observer
detector provides low false positive results, and it cannot analyze kuchana and com-
posite implementations. The Chain of Responsibility detector obtains low false posi-
tive results, except for the composite3 and cooper implementations. In these cases,
one method is wrongly considered as a handle() candidate. The Chain of Responsibil-
ity detector cannot perform the analysis on the visitorContact implementation. This
result depends on the differences between the two pattern structures.

Table 8. Observer implementation analyzed by three design pattern detectors

Table 9. Visitor implementation analyzed by three design pattern detectors

www.manaraa.com

176 F. Arcelli et al.

Table 10. JADEPT analyzed by JADEPT

Table 10 shows the results of JADEPT that analyzes itself. JADEPT is composed

of 151 classes. The analysis reveals the presence of Chain of Responsibility and Ob-
server, which are implemented in the code. There are no Visitor instances in
JADEPT. This analysis was performed only to test if any false positives are revealed.

To summarize, there are two main reasons why JADEPT cannot perform analysis
on some implementations. The first is related to the quality of implementations them-
selves because they are very different from the UML structure of patterns defined by
GoF. For example, classes do not implement the same interface or extend the same
class. We mean that such implementations cannot be retained as valid ones. Common
interfaces and classes are used to easily extend software and their use is a principle of
good programming as much as other design pattern features.

The second problem concerns the information partitioning technique of JADEPT.
Our tool can work on families retrieved from the information collected in JDEC.
Before starting the analysis, JADEPT identifies all the possible families and assigns to
each family a specific role, according to the design pattern it is looking for. If the
analyzed system is unstructured, meaning that common interfaces or classes are ab-
sent, JADEPT cannot build correctly the families and perform further analysis.

6 Concluding Remarks

As mentioned in the introduction, there are several main issues which should be ad-
dressed during the development of a design pattern detection tool. Considering these
issues, our contribution includes:

• the definition of recognition rules able to capture static and dynamic properties;
• the use of dynamic analysis to extract all the information needed in the detection

process;
• the specification of an entity-relationship schema to store and organize the ex-

tracted information from Java applications to be easily used for the recognition
of design pattern instances.

The recognition rules regard in particular the dynamic nature of patterns. Rules focus
on the behavior of the design patterns and not on their static aspects. Rules capturing
static properties have been introduced because they express pre-conditions for the
dynamic ones. Furthermore we have defined logical and informative dependencies
among rules, established the importance of rules in the detection process through
scores, and identified a group of rules characterizing the specific behavior of each
pattern through macrorules.

Dynamic analysis may obviously provide significant information for design pattern
recognition. Through dynamic analysis it is possible to observe objects, their creation
and execution during their entire life-cycle and overcome part of the limitations of the

www.manaraa.com

 Design Pattern Detection in Java Systems: A Dynamic Analysis Based Approach 177

static analysis (i.e., polymorfism) which may be determinant in pattern recognition.
There are also two disadvantages of the dynamic approach. The first is related to the
reduced performance of the analyzed application. To improve its performance we
have used a filtering system to trace only the meaningful events. Nevertheless the
execution time of the monitored applications is still longer than the ordinary execu-
tion time, especially for software having a Graphic User Interface. If the software
under examination does not require user interaction, execution time should not be a
critical factor. The second, concerns the code coverage problem. If the analyzed soft-
ware needs a user interaction, it could be necessary a human-driven selection of code
functions to reveal all possible behaviors. Thus, it is necessary to cover the entire
code and test all code functions one by one.

We have validated our idea through the implementation of the JADEPT prototype.
Modularity is one of the main characteristic of the JADEPT architectural model. Fur-
thermore, the tool can be easily extended to other programming languages. It may use
alternative ways to extract information or to perform analysis. It is possible also to
exclude the database and to use another approach to detect design patterns due to the
existence of the XML Report file. Or, the database model can be used in another de-
sign pattern detector or a software architecture reconstruction tool.

The decision to use a database to store the extracted information is due to two main
reasons. The first is related to the large amount of information which should be ex-
tracted during software execution and which should be further considered to identify
design patterns. The second is related to the time persistence of the extracted informa-
tion, the comparison among two or more executions of the software code or among
executions of different applications, and the statistics which may be done. The issues
related to this second aspect are not implemented in the current version of our proto-
type but will be addressed in the future developments of JADEPT.

Further work will regard also the extension of JADEPT to the creational and struc-
tural design patterns, as well as to its validation on systems of larger dimensions.

References

1. Abd-El-Hafiz, S.k., Shawky, D.M., El-Sedeek, A.-L.: Recovery of Object-Oriented Design
Patterns Using Static and Dynamic Analyses. International Journal of Computers and Ap-
plications (2008)

2. Arcelli, F., Masiero, S., Raibulet, C., Tisato, F.: A Comparison of Reverse Engineering
Tools based on Design Pattern Decomposition. In: 2005 IEEE Australian Software Engi-
neering Conference, pp. 262–269. IEEE Press, Los Alamitos (2005)

3. Arcelli, F., Perin, F., Raibulet, C., Ravani, S.: JADEPT: Behavioural Design Pattern De-
tection through Dynamic Analysis. In: 4th International Conference on Evaluation of
Novel Approaches to Software Engineering, pp. 95–106. INSTICC Press (2009)

4. Arcelli, F., Perin, F., Raibulet, C., Ravani, S.: Behavioural Design Pattern Detection
through Dynamic Analysis. 4th International Workshop on Program Comprehension
through Dynamic Analysis, Technical report TUD-SERG-2008-036, 11–16 (2008)

5. Bergenti, F., Poggi, A.: Improving UML Designs Using Automatic Design Pattern Detec-
tion. In: 12th International Conference on Software Engineering and Knowledge Engineer-
ing, pp. 336–343 (2000)

www.manaraa.com

178 F. Arcelli et al.

6. Birkner, M.: Object-Oriented Design Pattern Detection Using Static and Dynamic Analysis
of Java Software. Master Thesis, University of Applied Sciences Bonn-Rhein-Sieg, Sankt
Augustin, Germany (2007)

7. Byte-Code Engineering Library (BCEL), http://jakarta.apache.org/bcel
8. Cooper, J.W.: The Design Pattern Java Companion. Addison-Wesley, Reading (1998)
9. Demeyer, S., Mens, K., Wuyts, R., Guéhéneuc, Y.-G., Zaidman, A., Walkinshaw, N.,

Aguiar, A., Ducasse, S.: Workshop on Object-Oriented Reengineering (2005)
10. Fan, L., Qing-shan, L., Yang, S., Ping, C.: Detection of Design Patterns by Combining

Static and Dynamic Analyses. Journal of Shanghai University (English Edition) 11(2),
156–162 (2007)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: elements of reusable ob-
ject-oriented software. Addison Wesley, Reading (1994)

12. Guéhéneuc, Y.-G., Douence, R., Jussien, N.: No Java without Caffeine. A Tool for Dy-
namic Analysis of Java Programs. In: 17th IEEE International Conference on Automated
Software Engineering, pp. 117–126. IEEE Press, Los Alamitos (2002)

13. Guéhéneuc, Y.G.: PTIDEJ: Promoting Patterns with Patterns. In: 1st ECOOP Workshop
on Building Systems using Patterns, pp. 1–9. Springer, Heidelberg (2005)

14. Heuzeroth, D., Holl, T., Löwe, W.: Combining Static and Dynamic Analysis to Detect In-
teraction Patterns. In: 6th World Conference on Integrated Design and Process Technology
(2002)

15. Hu, L., Sartipi, K.: Dynamic Analysis and Design Pattern Detection in Java Programs. In:
20th International Conference on Software Engineering & Knowledge Engineering,
pp. 842–846 (2008)

16. Java documentation,
 http://java.sun.com/j2se/1.4.2/docs/api/java/util/
 Observer.html

17. Lee, H., Youn, H., Lee, E.: Automatic Detection of Design Pattern for Reverse Engineer-
ing. In: 5th ACIS International Conference on Software Engineering Research, Manage-
ment & Applications, pp. 577–583 (2007)

18. Nickel, U., Niere, J., Zündorf, A.: The FUJABA Environment. In: 22nd International Con-
ference on Software Engineering, pp. 742–745 (2000)

19. Niere, J., Schäfer, W., Wadsack, J.P., Wendehals, L., Welsh, J.: Towards Pattern-Based
Design Recovery. In: 24th International Conference on Software Engineering, pp. 338–348
(2002)

20. Perin, F.: Dynamic analysis to detect the design patterns in Java: gathering information
with JPDA. MSc Thesis, University of Milano-Bicocca, Milan (2007)

21. Ravani, S.: Dynamic analysis for Design Pattern detecting on Java code: information rela-
tionship modelling, MSc Thesis, University of Milano-Bicocca, Milan (2007)

22. Pettersson, N.: Measuring Precision for Static and Dynamic Design Pattern Recognition as
a Function of Coverage. In: Workshop on Dynamic Analysis, ACM SIGSOFT Software
Engineering Notes, vol. 30(4), pp. 1–7 (2005)

23. Shawky, D.M., Abd-El-Hafiz, S.K., El-Sedeek, A.-L.: A Dynamic Approach for the Identi-
fication of Object-oriented Design Patterns. In: IASTED Conference on Software Engi-
neering, pp. 138–143 (2005)

24. Shi, N., Olsson, R.A.: Reverse Engineering of Design Patterns from Java Source Code. In:
21st Conference on Automated Software Engineering, pp. 123–134. IEEE Press, Los
Alamitos (2006)

www.manaraa.com

 Design Pattern Detection in Java Systems: A Dynamic Analysis Based Approach 179

25. Smith, J.M.C., Stotts, D.: Elemental Design Patterns: A Formal Semantics for Composi-
tion of OO Software Architecture. In: 27th Annual NASA Goddard Software Engineering
Workshop, pp. 183 (2002)

26. Smith, J.M.C., Stotts, D.: SPQR: Flexible Automated Design Pattern Extraction From
Source Code. In: 2003 IEEE International Conference on Automated Software Engineer-
ing, pp. 215-224, IEEE Press (2003)

27. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design Pattern Detec-
tion Using Similarity Scoring. IEEE Transactions on Software Engineering 32(11), 896–
909 (2006)

28. Verkamo, A.I., Gustafsson, J., Nenonen, L., Paakki, J.: Design patterns in performance
prediction. In: ACM 2nd Workshop on Software and Performance, pp. 143–144 (2000)

29. Wendehals, L.: Improving Design Pattern Instance Recognition by Dynamic Analysis. In:
ICSE 2003 Workshop on Dynamic Analysis, pp. 29–32. IEEE Press, Los Alamitos (2003)

30. Wendehals, L., Orso, A.: Recognizing Behavioral Patterns at Runtime using Finite Auto-
mata. In: 4th International ICSE Workshop on Dynamic Analysis, pp. 33–39 (2006)

31. Zaidman, A., Hamou-Lhadj, A., Greevy, O.: Program Comprehension through Dynamic
Analysis. In: 1st International Workshop on Program Comprehension through Dynamic
Analysis, Technical report 2005-12 (2005)

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 180–192, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Formalization of the UML Class Diagrams

Janis Osis and Uldis Donins

Department of Applied Computer Science, Institute of Applied Computer Systems
Riga Technical University, Meza iela 1/3, Riga, LV 1048, Latvia

{janis.osis,uldis.donins}@cs.rtu.lv

Abstract. In this paper a system static structure modeling formalization and
formalization of static models based on topological functioning model (TFM) is
proposed. TFM uses mathematical foundations that holistically represent com-
plete functionality of the problem and application domains. By using TFM
within software development process it is possible to do formal analysis of a
business system and in a formal way to model the static structure of the system.
After construction of the TFM of a system’s functioning a problem domain ob-
ject model is defined by performing transformation of defined TFM. By making
further transformations of TFM and by using TFM within software develop-
ment it is possible to introduce more formalism in the Unified Modeling
Language (UML) diagrams and in their construction. In this paper we have in-
troduced topology into the UML class diagrams.

1 Introduction

The Unified Modeling Language (UML) is a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive
system. The UML offers a standard way to write a system's blueprints, including
conceptual things such as business processes and system functions as well as concrete
things such as programming language statements, database schemas, and reusable
software components. [3] and [8]

Since the publication of first UML specification, researchers have been working and
proposing approaches for the UML formalization. Researches on UML formalization
are performed because the meaning of the language, which is mainly described in
English, is too informal and unstructured to provide a foundation for developing formal
analysis and development techniques, and because of the scope of the model, which is
both complex and large [2]. Despite the fact that the latest UML specification [14]
which is published by Object Management Group [4] is based on the metamodeling
approach, the UML metamodel gives information about abstract syntax of UML but
does not deal with semantics which is expressed in natural language.

After the publication of the first UML specification precise UML (pUML) group
[13] was found with main goal to bring together international researchers and
practitioners who share the aim of developing the UML as a precise modeling
language. The aim of pUML group is to work firmly in the context of the existing
UML semantics. As a formalization instrument they use several formal notations, for
example, Object Constraint Language [12] or the formal language Z [10].

www.manaraa.com

 Formalization of the UML Class Diagrams 181

There are also other researches on formalization of UML and class diagrams, for
example, [11] in which mathematical expressions are used to describe formal
semantics of the key elements of the UML static models (class diagrams).

All described researches are provided to formalize only the UML semantics but
these approaches does not:

• provide a formal way how to develop system description models in formal
way,

• improve system description possibilities (for example, does not define new
associations or relations between classes), and

• use topology as a formalization tool to describe system’s functioning.

The main idea of the given work is to introduce more formalism into the UML class
diagrams and to propose a formal approach for developing formalized class diagrams.
To achieve this goal formalism of a Topological Functioning Model (TFM) [6] is
used. The TFM holistically represents a complete functionality of the system from the
computation-independent viewpoint. It considers problem domain information
separate from the application domain information captured in requirements. The TFM
is an expressive and powerful instrument for a clear presentation and formal analysis
of system functioning and the environment the system works within. We consider that
problem domain modeling and understanding should be the primary stage in the
software development, especially in the case of embedded and complex business
systems, where failure can lead to huge losses. This means that class diagrams must
be applied as part of a technique, whose first activity is the construction of a well-
defined problem domain model.

This paper is organized as follows. Section 2 describes the suggested solution of
formalizing UML class diagrams by using topology which is defined with the help of
TFM. Section 3 discusses the use of TFM for problem domain modeling and creation
of topological class diagrams. TFM makes it possible to use a formal model as a
computation independent one without introducing complex mathematics. Besides
that, it allows validation of functional requirements at the beginning of the analysis.
By using TFM in the modeling process it is possible to introduce topology in the class
diagrams. As a result we have constructed a new type of class diagrams – topological
class diagrams. Description of the problem domain modeling is illustrated with an
example which clearly shows the process of developing topological class diagrams.
Section 4 gives conclusions of our work and discuss future work.

2 Formalization of the Class Diagram

Class diagrams reflect the static structure of the system, and with the help of class
diagrams it is possible to model objects and their operations involved in the system.
Regardless of the opportunities provided by the class diagrams, it is not possible to
reflect the cause and effect relation within a system or to indicate which certain activ-
ity accomplishment of an object triggers another object’s certain activity accom-
plishment. By using the idea published in [5] about topological UML diagrams
(including topological class diagrams) we have developed method for construction of
topological class diagrams and we have developed the topological class diagram.

www.manaraa.com

182 J. Osis and U. Donins

Before topological class construction it is needed to construct the TFM of the sys-
tem functioning. After construction of TFM it is possible to transform topology de-
fined in TFM into class diagrams and in such a way introduce more formalism into
class diagrams. It is possible to transform topology from TFM into class diagrams
because TFM has strong mathematical basis. In this way the formalism of class dia-
grams means that between classes are precisely defined relations which are identified
from the problem domain with help of TFM. In traditional software development
scenario relations (mostly associations and generalizations) between classes are de-
fined by the modeler’s discretion.

Since the TFM of system functioning relations between objects involved into sys-
tem define as cause and effect relationships, it is not possible to depict those relations
within class diagrams by using existing relations defined in UML specification [14].
To enable depicting cause and effect relationships between objects in class diagrams,
we have introduced a new type of relation between classes in class diagram – the
topological relation.

TFM has strong mathematical basis and is represented in a form of a topological
space (X, Θ), where X is a finite set of functional features of the system under consid-
eration, and Θ is the topology (i.e., cause and effect relations between functional
features) that satisfies axioms of topological structures and is represented in a form of
a directed graph. The necessary condition for constructing the topological space is a
meaningful and exhaustive verbal, graphical, or mathematical system description. The
adequacy of a model describing the functioning of a concrete system can be achieved
by analyzing mathematical properties of such abstract object [6].

A TFM has topological characteristics: connectedness, closure, neighborhood, and
continuous mapping. Despite that any graph is included into combinatorial topology,
not every graph is a topological functioning model. A directed graph becomes the
TFM only when substantiation of functioning is added to the above mathematical
substantiation. The latter is represented by functional characteristics: cause-effect
relations, cycle structure, and inputs and outputs. It is acknowledged that every busi-
ness and technical system is a subsystem of the environment. Besides that a common
thing for all system (technical, business, or biological) functioning should be the
main feedback, visualization of which is an oriented cycle. Therefore, it is stated that
at least one directed closed loop (main functioning cycle) must be present in every
topological model of system functioning. It shows the “main” functionality that has a
vital importance in the system’s life. Usually it is even an expanded hierarchy of
cycles. Therefore, a proper cycle analysis is necessary in the TFM construction,
because it enables careful analysis of system’s operation and communication with
the environment [6].

There are two stages at the beginning of the problem analysis: the first one is anal-
ysis of the business (or enterprise system) context (the problem domain) and the sec-
ond one is analysis of the application context (the application domain). These levels
should be analyzed separately. The first idea is that the application context constrains
the business context, not vice versa. The second idea is that functionality determines
the structure of the planned system (Fig. 1). Having knowledge about the complex
system that operates in the real world, a TFM of this system can be composed.

www.manaraa.com

 Formalization of the UML Class Diagrams 183

Know ldege
about the
system

Topological
functioning

model

Client’s
requirements

Functional
requirements
specification

Topological
class

diagrams
Application domain

Problem domain

in
conformance
with

graph transformation

Fig. 1. Creation of the software design by using the TFM

In [7] it is suggested that problem domain concepts are selected and described in an
UML Class Diagram. In our work we select and describe problem domain concepts
by means of topological class diagrams. All these steps are illustrated by the example
given in next section.

3 Case Study of the Construction of the Topological Class
Diagram

For a better understanding of the construction of the TFM and topological class dia-
gram let us consider small fragment of an informal description from the project, in
which a library application is developed:

“All library visitors are registered. Registration is done by the receptionist. Any
visitor, who is registered in the library readers’ register and who has filled out and
filled the reader’s card is considered as a reader. If the visitor is not a registered reader
yet, the receptionist performs the reader registration. If the visitor does not have the
reader’s card, the receptionist makes it anew. Registered readers with reader cards
have the right to use the library catalogue in order to find the book they need. Only
one catalogue is available in the library. To borrow a book from the library, the reader
has to complete the request form. Having completed the request form, the reader sub-
mits it to the librarian, who counts the number of books already borrowed by the
reader. If the number of borrowed books does not exceed the maximum allowed
number, the librarian checks, if the reader’s chosen book is available from the library
repository. If the chosen book is available from the library repository, the librarian
hands out the book to the reader. The library has only one book repository. When the
reader returns the book, the librarian checks its condition. If the book is damaged, the
librarian calculates the fine and issues the fine ticket to the reader. If the book is ex-
tremely damaged and cannot be used anymore, the librarian withdraws it and delivers
to utilizer, and, if this is the only copy of the book, also removes it form the library
catalogue. When the library buys a book, the receptionist checks if the book is not
entered in the library catalogue yet, the receptionist registers it in the catalogue. After
the book registration, receptionist places it in the book repository and makes it avail-
able for borrowing.”

www.manaraa.com

184 J. Osis and U. Donins

Fig. 2. The construction of the TFM

3.1 The Construction of the Topological Functioning Model

Construction of the TFM consists of three steps [5] (see Fig. 2).
The steps for the TFM construction are:

Step 1: Definition of physical or business functional characteristics, which consists of
the following activities:

1) definition of objects and their properties from the problem domain description;
2) identification of external systems and partially-dependent systems; and
3) definition of functional features using verb analysis in the problem domain

description, i.e., by finding meaningful verbs.

Within the [1] it is suggested that each functional feature is a tuple (1),

<A, R, O, PrCond, PostCond, E, Cl, Op> (1)

where:
• A is an object action,
• R is a result of this action,
• O is an object (objects) that receives the result or that is used in this action

(for example, a role, a time period, a catalogue, etc.),
• PrCond is a set PrCond = {c1, …, ci}, where ci is a precondition or an atom-

ic business rule (it is an optional parameter),
• PostCond is a set PostCond = {p1, …, pi}, where pi is a postcondition or an

atomic business rule (it is an optional parameter),

www.manaraa.com

 Formalization of the UML Class Diagrams 185

• E is an entity responsible for performing actions,
• Cl is a class which will represent in system static model the object which will

contain operation for functionality defined by this functional feature (this pa-
rameter can be fulfilled when the class diagram is synthesized), and

• Op is an operation which will contain functionality defined by functional fea-
ture (this parameter can be fulfilled when the class diagram is synthesized).

We have added parameters Cl and Op to tuple defined in [1] to contain in the tuple all
the information about functional feature. If there is a need to store additional informa-
tion about functional features then it is possible to add more parameters to this tuple.

Each precondition and atomic business rule must be either defined as a functional
feature or assigned to an already defined functional feature.

For the library project example we have defined the following 29 functional fea-
tures (in the form of tuple containing the following parameters: identificator, object
action (A), precondition (PrCond), object (O), mark if functional feature is external or
internal), where Rec denotes Receptionist, R – Reader, L – Librarian, In – Inner, and
Ex - External:

<1, A visitor arriving in the library, Ø, Visitor, Ex>, <2, Checking of personal data
with the library readers’ register, Ø, Rec, In>, <3, Reader’s registration in the library
readers’ register, if the person is not registered in the readers’ register yet, Rec, In>,
<4, Reader’s card preparation, if the reader does not have the reader’s card yet (or) if
the reader has lost his/her reader’s card, Rec, In>, <5, Reader’s card issue to the read-
er, Ø, Rec, In>, <6, The reader status authorization, if the reader is registered (and) if
the reader has the reader’s card, R, In>, <7, Searching for a book in the book cata-
logue, if the reader has the reader’s card, R, In>, <8, Completion of the book request
form, if the reader has found the book he or she needs, R, In>, <9, Submission of the
book request form, Ø, R, In>, <10, Count of books borrowed by the reader, Ø, L, In>,
<11, Checking of the book availability in the book repository, if the number of books
borrowed by the reader does not exceed the maximum allowed, L, In>, <12, Taking
the book from the book repository, if the book is available in the book repository, L,
In>, <13, Handing out the book to the reader, Ø, L, In>, <14, Borrowing the book, Ø,
R, In>, <15, Book return, Ø, R, Ex>, <16, Checking of the book condition, Ø, L, In>,
<17, Fine calculation, if the book is damaged, L, In>, <18, Handing out the fine tick-
et, Ø, L, Ex>, <19, Fine payment, Ø, R, Ex>, <20, Book return/placement into book
repository, Ø, L, In>, <21, Book withdrawal, if the book is extremely damaged (can-
not be used anymore), L, Ex>, <22, Book removal from the catalogue, in case of the
last copy of the book, L, In>, <23, New book purchase, Ø, Library, Ex>, <24, Books
data entry into catalogue, if the library does not have a copy of this book, Rec, In>,
<25, Book identification number assignment, Ø, Rec, In>, <26, Book utilization, If
the book is extremely damaged, Utilizer, Ex>, <27, Book repository maintenance, Ø,
L, In>, <28 Completion of the book utilization request form, Ø, L, In>, and <29, The
fine deletion, if the reader has paid the fine, L, In>.

Step 2: Introduction of topology Θ, which means establishing cause and effect rela-
tions between functional features. Cause-and-effect relations are represented as arcs
of a directed graph that are oriented from a cause vertex to an effect vertex.

The identified cause and effect relations between the functional features are illus-
trated by the means of the topological space (see Fig. 3).

www.manaraa.com

186 J. Osis and U. Donins

Fig. 3. Topological space of the library functioning

In the Fig. 3 is clearly visible that cause and effect relations form functioning cy-
cles. All cycles and sub-cycles should be carefully analyzed in order to completely
identify existing functionality of the system under consideration. The main cycle (or
cycles) of system functioning (i.e., functionality that is vital for the system’s life – the
functionality without which the system can no longer function and exist) must be
found and analyzed before starting further analysis. In the case of studying and de-
signing a complex system, the TFM of this system can be divided into a series of
subsystems according to the identified cycles.

Step 3: Separation of the topological functioning model, which is performed by ap-
plying the closure operation over a set of system’s inner functional features [6]: A
topological space is a system represented by Equation (2),

Z = N ∪ M (2)

where N is a set of inner system functional features and M is a set of functional fea-
tures of other systems that interact with the system or of the system itself, which af-
fect the external ones.

A TFM (X∈Θ) is separated from the topological space of a problem domain by the
closure operation over the set N as it is shown by Equation (3),

[] ∪
n

XNX
1=

==
η

η

(3)

where Xη is an adherence point of the set N and capacity of X is the number n of
adherence points of N.

Fig. 4. Neighborhood of element of the set N

www.manaraa.com

 Formalization of the UML Class Diagrams 187

An adherence point of the set N is a point, whose each neighborhood includes at
least one point from the set N. The neighborhood of a vertex x in a directed graph is
the set of all vertices adjacent to x and the vertex x itself. It is assumed here that all
vertices adjacent to x lie at the distance d=1 from x on ends of output arcs from x. An
illustrative example of vertex’s neighborhood is given in Fig. 4.

The example below illustrates how is performed the closuring operation (3) over
the set N in order to get all of the system’s functionality (the set X):

• The set of the system’s inner functional features N = {2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 16, 17, 20, 21, 22, 24, 25, 27, 28, 29};

• The set of external functional features and system functional features that affect
the external environment M = {1, 15, 18, 19, 21, 23, 26};

• The neighborhood of each element of the set N is as follows: X2 = {2, 3, 4, 6},
X3 = {3, 4}, X4 = {4, 5}, X5 = {5, 6}, X6 = {6, 15}, X7 = {7, 8}, X8 = {8, 9}, X9
= {9, 10}, X10 = {10, 11}, X11 = {11, 12, 27}, X12 = {12, 13, 27}, X13 = {13,
14}, X14 = {14, 6}, X16 = {16, 17, 20, 21}, X17 = {17, 18}, X20 = {20, 7, 27}, X22
= {22, 7}, X24 = {24, 7, 25}, X25 = {25, 20}, X27 = {27}, X28 = {28}, and X29 =
{29}; and

• The obtained set X (the TFM) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 20, 21, 22, 24, 25, 27, 28, 29}.

Obtained TFM of library functioning after performing closuring operation over the set
of system inner functional features (the set N) can be seen in Fig. 5.

The example represents the main functional cycle defined by the expert, which in-
cludes the following functional features “6-15-16-20-7-8-9-10-11-12-13-14-6” and is
denoted by bold lines in Fig. 5. These functional features describe checking out and
taking back a book. A cycle that includes the functional features “6-7-8-9-10-11-12-
13-14-6” illustrates an example of the first-order sub-cycle. These functional features
describe checking out a book.

3.2 Construction of the Topological Class Diagram

In the [7] is offered the conceptual development of class diagrams as the final step of
the TFM usage. In this conceptual class diagram relevant information – directions of
associations between the classes – is lost. This important information is lost because
within approach given in [7] the relations between classes are defined with one of the
relations defined in UML – the associations. It is not possible to transform topological
(cause and effect) relations between TFM’s functional features into associations be-
tween classes. It is impossible because:

1) the direction of topological relation is not always the same as direction of
association,

2) association also can be bidirected (topological relationship can not be
bidirected), and

3) topological relationship only can be binary relation (association can relate
more than two classes, for example, ternary association which relates three
classes).

www.manaraa.com

188 J. Osis and U. Donins

Fig. 5. Topological functioning model of the library functioning

Because of this constraint in [7] it is recommended to define those association direc-
tions in further software development, for example, while developing a more detailed
software design. But at this point a step back should be taken to review the TFM and
its transformation on the conceptual class diagram. To avoid such regression and to
save the obtained topology between the classes, by using the idea published in [5]
about topological UML (TopUML) diagrams (including topological UML class dia-
grams), it is possible to develop a topological class diagram where the established
TFM topology between classes is retained. The retained topology (cause and effect
relations between classes) in class diagrams brings more formalism in these class
diagrams. Formalism of class diagrams is improved because between classes now are
precisely defined relations. In traditional software development relations (mostly
associations and generalizations) between classes are defined by the modeler’s discre-
tion (the approach given in the [7] helps to identify associations between classes but
the identification of direction for these associations again are defined by the mod-
eler’s discretion).

Topological relations between classes throughout this article are marked with di-
rected arcs (this means that within this article notation used for topological relations
between classes is similar to notation of associations in UML). The example of topo-
logical relations is shown in Fig. 6.

Fig. 6. Topological relations between classes

www.manaraa.com

 Formalization of the UML Class Diagrams 189

Fig. 7. The process of the development of the topological class diagram

In order to obtain a topological class diagram, first of all a graph of problem do-
main objects must be developed and afterwards transformed into a class diagram. In
order to obtain a problem domain object graph, it is necessary to detail each func-
tional feature of the TFM to a level where it uses only one type of objects.

After construction of detailed TFM this more accurate model must be transformed
one-to-one to a problem domain object graph and then the vertices with the same type
of objects and operations must be merged, while keeping all relations with other
graph vertices. As a result, object graph with direct links is defined. Schematic repre-
sentation of topological class diagram development is given in Fig. 7.

By using the ideas published in [7] it is possible to obtain from TFM a conceptual
class diagram without orientated relations between classes and the classes without
operations. Modifying this approach it is possible to develop not only topological
class diagrams, where the direction of relations is retained, but also to obtain the pos-
sible class operation definitions. In order to define conceptual operations, it is neces-
sary to change not only every functional feature to one kind of object, but also by
doing this transformation, to add a operation to the obtained (using a point notation),
the description of which shortly describes the defined activity of the functional fea-
ture, for example, the functional feature "The reader’s card issue to the reader" is
transformed to the object "ReaderCard" and the operation "GiveOutToReader()"
(when point notation is used the obtained result looks like this: "Reader-
Card.GiveOutToReader()").

At this moment it is possible to add additional information to the tuple (fulfil pa-
rameters Cl and Op) which is describing functional feature. After adding two parame-
ters describing class and operation the tuple looks like this: <5, Reader’s card issue to
the reader, Ø, Rec, In, ReaderCard, GiveOutToReader>.

Discussed example skips the step of the TFM refinement, because each functional
feature deals only with one type of objects and operations. Fig. 8 shows the transfor-
mation of the TFM to the graph of domain objects with conceptual operations.

Fig. 9 presents topological class diagram of the library example after domain object
graph is abstracted, i.e., after merging all graph vertices with the same object types.

With the boldest lines in developed topological class diagram is maintained main
functional cycle which is defined by the expert within the constructed TFM. This
reflects the idea proposed in [5] and [6] that the holistic domain representation by the
means of the TFM enables identification of all necessary domain concepts and, even,
enables to define their necessity for a successful implementation of the system.

www.manaraa.com

190 J. Osis and U. Donins

Fig. 8. The graph of domain objects with operations

Fig. 9. Topological class diagram

The topological (cause and effect) relationship between classes, which are de-
scribed with one way directed arc, cannot be compared with none of the UML rela-
tionships between the classes given in UML language specification [14]. The UML
language specification gives the following relationships between the classes:

• association (including aggregation and composition),
• generalization,

www.manaraa.com

 Formalization of the UML Class Diagrams 191

• dependence,
• usage,
• abstraction,
• realization, and
• substitution.

All previously mentioned relationships between classes define only the way in which
the classes interact and use each other [9], but the adopted topology in class diagrams
allows to keep the cause and effect relationships between objects. The saved topology
between classes in class diagram enables more efficient development of the software
system class diagram.

By keeping topological relationships between the classes it is recommended to use
one-way association, because two mutually opposed associations between two classes
can represent various multiplications. If topological class diagram is used to make the
non-oriented class diagram, then relations between two classes can be joined into one,
and as a multiplicity save the biggest multiplicity of all topological associations be-
tween those two classes.

4 Conclusions and Future Work

The application of the TFM has the following advantages:

• With the help of TFM it is possible to introduce more formalism in the UML
diagrams and in their construction. In our work we have shown that it is pos-
sible to maintain in the class diagrams the topology which is developed using
TFM.

• Using TFM for problem domain modeling and application domain definition
it is possible to provide traceability between software requirements, func-
tional features and even developed architecture elements.

• By performing TFM transformations it is possible to develop problem do-
main objects’ graphs and topological class diagrams.

• Topological class diagram can also be used as architecture for the new sys-
tem. With the help of TFM and topological class diagrams it is possible to
develop software system’s business layer which corresponds to the defined
requirements.

To continue working on topological UML diagrams, it is necessary to supplement the
description of topological class diagrams, to create the meta-model of the topological
class diagram as well as to study the possibilities of topology implementation into
other UML diagrams (for example, activity diagrams) and to assess its influence on
the software system development.

References

1. Asnina, E.: The Formal Approach to Problem Domain Modelling Within Model Driven
Architecture. In: Proceedings of the 9th International Conference “Information Systems
Implementation and Modelling” (ISIM 2006), Přerov, Czech Republic. Jan Štefan MARQ,
pp. 97–104 (2006)

www.manaraa.com

192 J. Osis and U. Donins

2. Evans, A., Kent, S.: Core Meta-Modelling Semantics of UML: The pUML Approach. In:
France, R.B., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 140–155. Springer,
Heidelberg (1999)

3. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd
edn. Addison-Wesley, Reading (2003)

4. Object management group, OMG (2008), http://www.omg.org
5. Osis, J.: Extension of Software Development Process for Mechatronic and Embedded Sys-

tems. In: Proceeding of the 32nd International Conference on Computer and Industrial En-
gineering, University of Limerick, Limerick, Ireland, pp. 305–310 (2003)

6. Osis, J.: Formal Computation Independent Model within the MDA Life Cycle. Interna-
tional Transactions on Systems Science and Applications 1(2), 159–166 (2006)

7. Osis, J., Asnina, E.: Enterprise Modeling for Information System Development within
MDA. In: Proceedings of the 41st Annual Hawaii International Conference on System Sci-
ences (HICSS 2008), USA, p. 490 (2008)

8. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Man-
ual, 2nd edn. Addison-Wesley, Reading (2004)

9. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language User Guide, 2nd
edn. Addison-Wesley, Reading (2005)

10. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall, Englewood
Cliffs (1992)

11. Szlenk, M.: UML Static Models in Formal Approach. In: Meyer, B., Nawrocki, J.R., Wal-
ter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp. 129–142. Springer, Heidelberg (2008)

12. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA, 2nd edn. Addison-Wesley, Reading (2003)

13. The Precise UML group (pUML) (2000), http://www.cs.york.ac.uk/puml/
14. OMG: Unified Modeling Language Superstructure Specification, version 2.1.2 (2007)

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 193–205, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Extended KAOS Method to Model Variability in
Requirements

Farida Semmak1, Christophe Gnaho1,2, and Régine Laleau1

1 Paris Est University, LACL, France
{semmak,laleau}@u-pec.fr
2 Paris Descartes University, France

christophe.gnaho@mi.parisdescartes.fr

Abstract. This paper presents an approach to requirements engineering in the
Cycab domain. Cycabs are public vehicles with fully automated driving capa-
bilities. So far few studies have dealt with expressing such requirements at the
highest level of abstraction. Furthermore, during their building, software sys-
tems embedded in Cycabs are subject to frequent changes of requirements.
Thus, we need to represent a family of Cycabs that can differ according to dif-
ferent options. The proposed approach tries to address these issues by adopting
and extending the KAOS goal oriented method. The main objective is to pro-
vide a process to define and adapt specific requirements models from a generic
model, according to different situations made available to the stakeholders.

Keywords: Goal-based requirements engineering, Family model, Variability,
Land transportation domain.

1 Introduction

The paper sums up a work achieved as part of the Tacos1 Project [18] whose aim was
to define a component-based approach to specify trustworthy systems from the re-
quirements to the specification phase. The application domain of the project is the
Cycab, a new mode of urban transportation designed by INRIA [2], [13] in order to
offer a new alternative to private vehicles. A Cycab is controlled by an embedded
software system which enables fully automated driving capability. This paper focuses
on the requirements phase in the Cycab domain. So far, few studies have been con-
cerned with expressing the requirements at a high level of abstraction. The natural
language remains the main way for describing such requirements.

Furthermore, during their building, software systems embedded in Cycabs are sub-
ject to frequent requirements changes due to effective tests on the prototype. These
changes need to be taken into account and integrated in the current specification.
Thus, these systems require a rigorous requirements engineering approach that inte-
grates adaptation and tailoring.

1 The TACOS project (Ref. ANR-06-SETI-017) is supported by the French National Research

Agency.

www.manaraa.com

194 F. Semmak, C. Gnaho, and R. Laleau

This paper tries to address the above-mentioned issues. It proposes a requirements
engineering approach whose main objective is to provide the application engineer
with a process to define specific requirements models from a generic model, accord-
ing to different situations selected from a variant model.

The paper is organized as follows. Section 2 presents an overview of the research
project. Section 3 describes the variant model and the generic model. Section 4 fo-
cuses on the model building process. Related work is given in section 5. Section 6
concludes with some remarks about the results and future works.

2 Overview of the Research Project

This section presents the context of Cycab domain and an overview of the proposed
approach.

2.1 Domain Context

The Cycab transportation system has been chosen to be the application domain of the
project. Cycabs are small electric vehicles designed for restricted access zones: his-
toric city centers, airports, train stations or university campuses. They must be easy to
use by a large population: access control by smart, simple manual control through a
joystick, automatic parking and recharging, etc.

A Cycab is controlled by embedded electronic systems which allow automatic
driving under computer control. Computer control is achieved by processing informa-
tion coming from sensors and actuators that regulate the physical devices [22].
Several prototypes have already been built and tested. Two years of work have been
necessary to design and implement the first two prototypes [2], [13]. Now that the
feasibility of such a concept has been demonstrated, the objective of current Cycab
research projects is to enlarge the use of these vehicles by developing specific Cycabs
for specific services. We believe that a way to achieve this objective is to provide a
family of Cycabs that can differ from the different options made available to the
stakeholders, such as the localization mode, the driving mode, etc.

Therefore, Cycab systems represent a diversity of applications for which design ef-
forts could be capitalized. It becomes interesting to identify and express the common
and variable elements between these applications in order to reuse them.

2.2 Our Approach

The aim of our approach is to provide a generic model, from which requirements
models for specific systems can be derived according to some options selected by the
stakeholders. For instance, we can obtain "a Cycab with a GPS localization mode" or
"a Cycab with WPS and GPS localization modes" or "a Cycab with automatic driving
without doors" and so on. The generic model expresses the requirements at the high-
est abstraction level.

We believe that Goal-Oriented Requirements Engineering methods like KAOS [3],
[4], [9], i* [20], CREWS [15], GBRAM [1] are suitable to specify the generic model.
We have adopted the first one because it allows one to express "goals and their op-
erationalization into specifications of services and constraints (WHAT issues), and

www.manaraa.com

 Extended KAOS Method to Model Variability in Requirements 195

the assignment of responsibilities to agents such as humans, devices and software
pieces available or to be developed (WHO issues)" [9]. However, in preliminary
works [17], we have demonstrated that KAOS concepts are not sufficient for describ-
ing variations at goal level. In order to address this issue, we have associated to the
generic model a variant model that adds variability concepts to KAOS concepts.

Figure 1 shows an overview of the approach, it distinguishes two steps. In the first
step, the model engineer and the domain experts elaborate the generic model and the
variant model. In the second step, the application engineer builds and adapts a re-
quirements specific model according to the situations to be satisfied.

As already stated, requirements can change rapidly, therefore, thanks to the variant
model, the process should allow the application engineer to modify and adapt the
requirements model in order to face new situations.

To summarize, the objective of our approach is threefold. Firstly, it considers re-
quirements at the highest level of abstraction with a goal orientation; secondly, it
allows representing all the options and alternatives available in the domain; lastly, it
provides a process that helps the application engineer to create, adapt and modify the
requirements specific model in a flexible way.

3 Product Models

This section describes the variant model and the generic model, respectively. These
models are the product models used as input for the specific model building- process.

3.1 Variant Model

The variant model captures and describes the relevant domain characteristics that
present multiple options of realization. An underlying problem is to describe and
organize these characteristics in order to better represent the discriminatory elements
between applications of the domain. For that, we adopt and extend the concept of
facet as defined in [14].

Figure 2 presents the metamodel of the variant model as a UML class diagram,
focusing on the concepts of Facet and Variant and their dependencies.

A domain can be characterized by many facets. A facet represents a relevant fea-
ture that has an interest for the domain. A facet is defined by a name and a descrip-
tion. For instance, the Cycab transportation domain has several facets among which
the facet with the name "F1: localization mode" and the description "to know the (current)
vehicle position in order to follow its trajectory". The facet called "F2: Traffic Lane" has for
description "to indicate precisely the kind of route the vehicle follows".

A facet is composed of one or many variants. A variant defines a way to realize a
facet. For example, in Figure 3, the facet "F1: localization mode" has the following
variants: {V1: GPS, V2: wire guiding, V3: magnets plots, etc} meaning that the Cycab vehi-
cle may be localized by using one of the variants or by combining them. The facet "F2:
Traffic Lane" presents four variants: {V1: dedicated, V2: semi-protected, V3: pedestrian, V4:
urban road}.

www.manaraa.com

196 F. Semmak, C. Gnaho, and R. Laleau

Fig. 1. Overview of the approach

Fig. 2. The Variant Metamodel

A variant is described by a name, a cost, a rationale and a description. For in-
stance, one of the variants of facet F1 (Figure 3) has a name "GPS", a description
"localization by measuring signal propagation time from different satellites", a cost "Ø" and a
rationale "efficient if the localized area is not surrounded by high buildings".

The cost and rationale properties not only support decisions taken by the applica-
tion engineer but also contribute to express non-functional requirements (NFR). Note
that in this kind of systems, NFRs such as security or safety are crucial.

A facet may be refined in sub-facets; this is captured by the "refines" relationship
as shown in Figure 2. For example, the facet "F4: Obstacle detection" can be refined in
two sub-facets "F4.1: Collision detection" and "F4.2: Range finder" and each sub-facet has
its own variants as illustrated in Figure 4.

The dependencies between facets and variants or between variants are captured by
two relationship types. As shown in Figure 2, a variant of a given facet may require
zero or many variants of another facet; for instance, the variant "V2: Automatic" of the

www.manaraa.com

 Extended KAOS Method to Model Variability in Requirements 197

Fig. 3. Two facets and their variants

Fig. 4. Two examples of refined facets

facet "F3: Driving Mode" requires the variant "V1: dedicated" of the facet "F2: Traffic Lane".
A variant of a given facet may exclude zero or many variants of another facet. For
instance, the variant "V4: urban road" of facet F2 excludes the variant "V3: magnets plots"
of facet F1. A variant of a given facet may exclude another facet; for example, the
variant "V1: dedicated" of the facet "F2: Traffic Lane" excludes the facet "F4: Obstacle
detection".

To sum up, the variant model allows the expression of the relevant domain features
and the different ways to realize them. It therefore emphasizes differences between
systems of a same family.

3.2 Generic Model

As mentioned in section 2, the aim of the generic model is to capture, in an integrated
view, the common and variable requirements of the systems. This model is defined as
an instance of the generic metamodel which is obtained by extending the KAOS
metamodel with the concepts defined in the variant metamodel.

Figure 5 presents a portion of the generic metamodel. The KAOS concepts are rep-
resented on the right side of the figure whereas the extensions made to KAOS are
represented by grey boxes on the left side of the figure. A detailed description of the
KAOS metamodel can be found in [3], [4], [12].

www.manaraa.com

198 F. Semmak, C. Gnaho, and R. Laleau

Fig. 5. A portion of the generic metamodel

In the following, we will first present the KAOS concepts and then describe how
these concepts are related to the variability concepts.

• Brief overview of KAOS

The KAOS method provides four complementary sub-models that describe the sys-
tem and its environment: a goal model, a responsibility model, an operation model
and an object model. In this paper, we mainly focus on the goal model.

The main concept of the goal model is the concept of goal. A goal is defined as an
objective to be achieved by the system-to-be. A high level goal can be refined into
sub-goals, and then, recursively, into low-level sub-goals that lead to the requirements
of the system-to-be.

The refinement relationship between a high level goal and its sub-goals is an
AND/OR meta-relationship. When a goal is AND-refined into sub-goals, all of them
must be satisfied for the parent goal to be satisfied. When a goal is OR-refined, the
satisfaction of one of them is sufficient for the satisfaction of the parent goal.

A goal that cannot be refined further and that is assignable to an agent either in the
environment or in the system is a requisite. A requisite that is placed under the re-
sponsibility of an agent in the system is a requirement, whereas a requisite that is
placed under the responsibility of an agent in the environment of the system is an
expectation.

• KAOS with Variability

In our approach, the goal model aims at capturing and expressing all the possible
options of the systems-to-be in terms of requirements described at the highest level of
abstraction. The concept of alternative in KAOS can represent a kind of variability
that is local to a goal. But it is not sufficient to express variability, particularly the one
which has an impact on different parts of the goal model. Thus, we propose to extend
the KAOS concepts with the concepts of facet and variant.

The concept of <Facet-Variant> related to a refinement link, allows in addition to
take into account different situations which could be considered by the application

www.manaraa.com

 Extended KAOS Method to Model Variability in Requirements 199

Fig. 6. Partial Goal Model of the simplified Cycab Case Study

engineer. Thus, a couple<Fi, Vi> may be attached to a refinement link between a goal
and its sub goals, meaning that this refinement depends on the variant Vi of the facet
Fi. A refinement link that is not attached to a couple <Fi, Vi> is defined as mandatory
and is then common to all the applications of the domain.

Let us consider the facet named "F1: Cycab calling mode" with the following two as-
sociated variants: "V1: automatic" (a Cycab stopping at each station) and "V2: on de-
mand" (it stops at a station only if there is an external or internal demand). Figure 6
presents an instance of the generic metamodel with the high-level goal "Cycab transpor-
tation requests satisfied". So, according to the variant <F1, V1>, this goal is refined into
three sub-goals: "transportation requested", "transportation request not cancelled" and "pas-
sengers brought to their destination". Note that when the arrow is annotated (see Figure 6
with <F1, V1>), it means that all the links under the circle are annotated.

As previously said, the same variant can have an impact on several parts of the
graph. For instance, as shown in Figure 6, the variant <F1, V1> has an impact on two
parts of the graph. The sub-goal "passengers brought to their destination" is recursively
refined into five low-level sub-goals: the four mandatory sub-goals and the optional
sub-goal "Destination selected". With the variant <F1, V2>, the goal "Cycab transporta-
tion requests satisfied" is refined into one sub-goal: "Passengers brought to their destina-
tion". The latter is then refined into four sub-goals: "Cycab moved to the calling station",
"Passenger inside the Cycab", "Vehicle brought to destination" and "Passenger outside the
car". So the sub-goal "Destination selected" has not to be taken into account.

Furthermore, the assignment of an agent to a goal (requisite) is captured in the meta-
model by the Responsibility relationship (see Figure 5) which can be associated with zero
or many facets, which means that the assignment may depend on the selected variants.

In order to illustrate this, let us consider the following facets: "F2: Cycab doors open-
ing/closing mode" with the variants "V1: manual" or "V2: automatic"; and "F3: Cycab
driving mode" that can be either "V1: manual" (human driver) or "V2: automatic" (control
system driver).

www.manaraa.com

200 F. Semmak, C. Gnaho, and R. Laleau

Fig. 7. Refinement of the goal Cycab placed at disposal at the calling station

The impact of these variants is shown in Figure 7. Agents are represented by hex-
agonal boxes and requisites are represented as thick-bordered parallelograms.

Let us consider the requisite "Cycab in movement towards the calling station"; it may be
under the responsibility of either the "driving system" agent or the "human driver" agent.

With KAOS, a requisite is placed under the responsibility of only one agent. How-
ever, the extensions in Figure 5 enable the application engineer to make several agents
responsible for a given requisite. The decision to consider a requisite either as an ex-
pectation or as a requirement will be taken only when building a specific model. For
instance, in Figure 7, the requisite "doors opened" can be refined in a requirement or in
an expectation depending on the choice of variants. If the variant <F2, V2> ("automatic
doors opening/closing mode") is selected, then this requisite will be placed under the
responsibility of the system agent "Driving system" and consequently will be specialized
in a requirement. On the other hand, if <F2, V1> ("manual doors opening/closing mode") is
chosen, this requisite will become an expectation because it will be placed under the
responsibility of the "Passenger" which is an agent in the environment of the system.

4 Specific Model Building Process

This section describes the specific model building process, which is provided in order
to build a specific requirements model of the system to-be. The proposed process is

www.manaraa.com

 Extended KAOS Method to Model Variability in Requirements 201

 Step1: Retrieve
and Select facet

Step2: Select Variant of
the chosen facet

T2

Step4 :Match selected variants with
the requirement family model

Step5: Adapt the derived
model

T1
[Facet to refine]

Step6: Validate specific
requirements model

Step3: Validate selected
Facets and variants

T3

F1 : Localization mode
F2 : Traffic lane
F3 : Driving mode
F4 : Obstacle detection
F5 : Cycab calling mode
F6 : Doors opening-closing mode

...
F3 : {V1:Manual; V2: Automatic;
 V3:semiAutomatic}
...
F5 : {V1:On-demand; V2:Automatic}

[All facets not analyzed] [All variants not handled]

[Inconsistency]

Fig. 8. Overview of the specific model building process

different from a traditional process in which the construction of the model starts from
scratch and requirements are identified from documentation and interviews. The main
characteristic of this process is that requirements are derived and adapted thanks to
both generic and variant models.

Figure 8 represents an overview of the process as a UML activity diagram. It is an
iterative and incremental six-step process. The flow among the steps is not sequential
but may contain several cycles.

In the following paragraphs, each step involved is briefly explained

Step 1: Retrieve and select facet
This step describes the initial task to be performed by the application engineer. The

main objective is to select from the variant model a facet that is relevant to the system
to-be. This step may be performed one or many times depending on the conditions
involved. For instance, let us consider the choice of the facet "F4: Obstacle detection".

www.manaraa.com

202 F. Semmak, C. Gnaho, and R. Laleau

As explained in Figure 4, this facet needs to be refined in "F4.1: Collision detection" and
"F4.2: Range finder". To achieve this, step1 will be performed many times.

The transition (T1) from step1 to step 2 occurs if the selected facet does not need to
be refined.

Step 2: Select variant of the chosen facet
Having chosen a facet in the previous step, the application engineer needs to select

a variant of this facet. This task may be guided by the analysis of the properties of
each variant, in particular the cost and the rationale. The outcome is a couple (Facet,
Variant) as for instance <F5: Cycab calling mode, V2: Automatic>.

The transition (T2) from this step to the next one is not sequential. This step also
may be performed many times if all the variants are not handled. If other facets need
to be considered then go back to step 1; if the selection of couples (Facet, Variant) is
completed, then proceed to step 3.

Step 3: Validate selected Facets and Variants
A number of significant couples (Facet, Variant) results from the previous two

steps and need to be validated.
One of the main objectives of step 3 is to check the relationships between facets

and variants in order to handle interdependencies. For example, as explained in sec-
tion 3, the variant "V1: dedicated" of the facet "F2: Traffic lane" may exclude the
facet "F4: Obstacle detection".

If any inconsistency is detected go back to step 1. Otherwise, continue to step 4 (T3).

Step 4: Match selected variants with the generic model
Once the selected couples (Facets, Variants) have been validated in the previous

step they can be matched with the generic model. This is the focus of step 4.
To illustrate this step, let us consider the following set of variants (named situation 1)

: <F5: Cycab calling mode, V1: On demand>, <F6: Doors opening-closing mode, V1: Manual>
and <F3: Driving mode, V2: Automatic>. The matching of these variants with the generic
model yields the requirements model of the Cycab system presented in Figure 9.

Step 5 and Step 6: Adapt and validate the derived model
The last two steps of the process consist in adapting and validating the specific re-

quirements model resulting from step 4.
For example, the following set of variants defines a new situation named Situation

2: <F5: Cycab calling mode, V2: Automatic>, <F6: Doors opening-closing mode, V2: Auto-
matic> and <F3: Driving mode, V2: Automatic>. This new situation leads to the specific
requirements model presented in Figure 10 which is adapted to a Cycab without doors.

5 Related Works

The purpose of variability is to be able to identify and express the variable elements
between the applications of a given domain. It is considered as a key challenge in
building reusable infrastructures. Huge works have notably been done in the domain of
software product lines (SPL) [19], [6] where 'Variability' is modeled by the concepts of
variation point and of variant. A variation point defines an element in the model where
a variation occurs, while a variant represents a way to realize this element.

www.manaraa.com

 Extended KAOS Method to Model Variability in Requirements 203

Fig. 9. Requirements model according to Situation 1

Variability has also been studied in domain analysis. Among domain analysis
methods, the FODA method [7], [8] has been the first one to propose a model captur-
ing commonalities and variabilities in the form of Features; this model also represents
dependencies between features and constraints to combine them. The feature model
highlights, in the form of hierarchy sets, the characteristics that discriminate systems
in a domain. Many extensions have been proposed to the feature model: For instance,
the additional relation in [24] and the cardinality-based features model in [25].

In our work, we are interested in applying the concept of variability at a goal-based
requirements level [16], [17]. The approaches such as Foda or SPL do not deal with
variability at goal-oriented requirement level. However, other approaches have dealt
with variability at requirements engineering stage [10], [11], [21]. The approach pro-
posed in [10] uses an Or-decomposition link of goals to identify all possible options
in goal model for a single system. In [21], the authors have explored how goal models
and aspect concepts can be applied to deal with variability.

In our approach, we propose to introduce the concept of facet and variant in the goal
model (and in any model of KAOS) because we believe that the KAOS OR-
Refinement link is not sufficient to acquire variability effectiveness. The concept of
facet allows representing viewpoints or dimensions of a domain that help to classify
and organize domain knowledge. The notion of facet has been used in library science
to define classification methods for the domain [14]. It is important to emphasize that
the couple <facet-variant> does not only enable to represent a richer variability while

www.manaraa.com

204 F. Semmak, C. Gnaho, and R. Laleau

Fig. 10. Requirements model according to Situation 2

reducing combinatory explosion, but is also an effective support when building a spe-
cific requirements model.

6 Conclusions

In this paper, we have presented an approach based on the KAOS method with the
intention of introducing variability in goal based requirements. The main element of
this approach is a process which enables an application engineer to build a require-
ments model from a generic model according to some variants selected from a variant
model.

The benefit of such an approach is that it permits to elaborate a requirements model
in a flexible way and to adapt it according to new situations or to frequent require-
ments changes.

We are currently validating this approach through a software prototype [5]. The
next activity will consist in formally expressing the requirements model in order to
make it easier to map the software design from the requirements model.

References

1. Anton, A.I.: Goal based requirements Analysis. In: The 2nd Int. Conf. on RE (1996)
2. Baille, G., et al.: The INRIA Rhônes-Alpes Cycab, Technical Report N°0229 (1999), ISSN

0249-0803
3. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-oriented Requirements Acquisition.

Science of Computer (1993)

www.manaraa.com

 Extended KAOS Method to Model Variability in Requirements 205

4. Lamsweerde, A.: Goal-oriented Requirements Engineering: A guided tour. In: Int. Sympo-
sium on Requirements Engineering, Toronto (2001)

5. Gnaho, C., Al: A Tool for Modeling Variability at Goal Level. In: Third Int. Workshop on
Variability Modelling of Software-intensive Systems, VaMoS (2009)

6. Halmans, G., Pohl, K.: Communicating the variability of a software product family to cus-
tomers, Software and System Modeling. Springer, Heidelberg (2003)

7. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain analysis
(FODA) feasibility study CMU/SEI-90-TR-21, Univ. Pittsburgh, Pennsylvania (1990)

8. Kang, K., Kim, S., Lee, J., et al.: FORM: A Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures. Annals of Software Engineering 5, 143–168 (1998)

9. Lamsweerde, A.: From Systems Goals to Software Architecture. In: Bernardo, M., Inver-
ardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg (2003)

10. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On Goal-based Variability
Acquisition and Analysis. In: 14th IEEE Int. Conf. on Requirements Engineering (2006)

11. Liaskos, S., Jiang, L., Lapouchnian, A., Wang, Y., Yu, Y., Sampaio do Prado Leite, J.C.,
Mylopoulos, J.: Exploring the Dimensions of Variability: a Requirements Engineering
Perspective. In: 1st Int. Workshop on Variability Modelling of Software-intensive Sys-
tems, VaMoS (2007)

12. Objectiver Requirement Engineering tool, http://www.objectiver.com/
13. Parent, M.: Automated public vehicle: a first step towards the automatic highway. In: The

Proc. Of the World Congress on Intelligent transport systems (October 1997)
14. Prieto-Diaz, R.: Implementing Faceted Classification for software reuse. Communications

of the ACM 34(5) (1991)
15. Rolland, C., Souveyet, C., Ben Achour, C.: Guiding Goal Modelling Using Scenarios.

IEEE Transactions on Software Engineering (1998)
16. Semmak, F., Brunet., J.: Variability in Goal-oriented Domain Requirements. In: Morisio,

M. (ed.) ICSR 2006. LNCS, vol. 4039, pp. 390–394. Springer, Heidelberg (2006)
17. Semmak, F., Al: Extended KAOS to support Variability for Goal oriented Requirements

reuse. In: Int. Workshop Model Driven Information Systems Engineering with Caise 2008
(2008)

18. TACOS project, ANR-06-SETIN-017, programme SETIN 2006,
 http://tacos.loria.fr

19. Van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in Software Product
Lines. In: Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(2001)

20. Yu, E.: Towards Modeling and Reasoning Support for Early-Phase Requirements Engineer-
ing. In: 3rd IEEE International Symposium on Requirements Engineering, pp. 226–235.
ACM Press, New York (1997)

21. Gonzales-Baixauli, M.A., Laguna, J.C.: Sampaio do Prado Leite Using Goal-models to
analyse variability. In: 1st Workshop on VAMOS, Limerick, Ireland (2007)

22. Broy, M.: Requirements Engineering for Embedded Systems. In: The proceedings of
Femsys (1997)

23. Bachmann, F., Bass, L.: Managing variability in software architecture. ACM Press, NY
(2001)

24. Griss, M., Favaro, J., d’Alessandro, M.: Integrating feature modeling with the Rseb. In:
Proc. Of the 5th int. Conference of Software Reuse (1998)

25. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature models
and their specialization. Software Process Improvement and Practise 10(1), 7–29 (2005)

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 206–219, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Orthographic Software Modeling: A Practical Approach
to View-Based Development

Colin Atkinson, Dietmar Stoll, and Philipp Bostan

Institute of Computer Science, University of Mannheim
68131 Mannheim, Germany

{Atkinson,Stoll,Bostan}@informatik.uni-mannheim.de

Abstract. Although they are significantly different in how they decompose and
conceptualize software systems, one thing that all advanced software engineer-
ing paradigms have in common is that they increase the number of different
views involved in visualizing a system. Managing these different views can be
challenging even when a paradigm is used independently, but when they are
used together the number of views and inter-dependencies quickly becomes
overwhelming. In this paper we present a novel approach for organizing and
generating the different views used in advanced software engineering methods
that we call Orthographic Software Modeling (OSM). This provides a simple
metaphor for integrating different development paradigms and for leveraging
domain specific languages in software engineering. Development environments
that support OSM essentially raise the level of abstraction at which developers
interact with their tools by hiding the idiosyncrasies of specific editors, storage
choices and artifact organization policies. The overall benefit is to significantly
simplify the use of advanced software engineering methods.

1 Introduction

In an effort to accommodate the ever growing demand for more complex and feature-
rich applications, and to develop software in more cost effective and systematic ways,
in recent years the IT industry has experimented with various new paradigms for
software engineering. Chief amongst them are model-driven development, compo-
nent-based development, product line engineering (PLE) and aspect-oriented devel-
opment. They each use a different combination of abstraction and (de)composition
techniques to break a large complex system or family of systems into manageable
pieces. However, one thing they all have in common is that they increase the number
of artifacts or “views” involved in the software engineering process. Model-driven
development introduces views at various levels of platform specificity together with
transformations between them, component-based development introduces internal and
external views of software components as well as their compositions, PLE introduces
family wide and product specific views of systems and the feature choices that relate
them, and finally aspect-oriented development introduces a view of functional and
cross cutting elements of a software system and how they are woven together.

Even when used alone, therefore, these new methods increase the need to define and
manage multiple views, but when two or more of these methods are used together, the
number of views quickly explodes out of control. The current view generation and

www.manaraa.com

 Orthographic Software Modeling: A Practical Approach to View-Based Development 207

management approaches of most case tools are wholly inadequate to deal with these
challenges, however. First, few if any have a concrete idea of what views should be
created in a development project, what contents they should contain and how they
should be related. Secondly, most have a fixed, hardwired definition of what view
types are possible (e.g. UML diagrams, annotated code and aspects etc.). Thirdly, most
provide ad-hoc techniques for maintaining consistency between views and do so on a
limited, pair wise basis. While this might be feasible for small numbers of views, it
does not scale to large numbers.

We believe that one of the next major steps forward in software engineering will be
driven by tools and methodologies that provide a systematic and flexible approach to
view generation and management. To do this the next generation of tools needs to
support:

1. Dynamic View Generation
2. Dimension-based View Navigation
3. View-oriented Methods

We are currently developing an approach for doing this that we refer to as Ortho-
graphic Software Modeling (OSM). The name is motivated by the orthographic pro-
jection approaches used in CAD tools to visualize physical objects. In this paper1 we
describe the basic idea behind OSM and explain how the tool that supports it meets
the three basic requirements outlined above. We then present a small case study that
illustrates how OSM might work in practice.

2 View-Based Software Engineering Method

To provide the context for the first two requirements (dynamic view management and
dimension based view navigation), in this section we first provide an overview of the
view-based method that we are currently trying to support. This is an updated version
of the KobrA method [1], KobrA 2.0 [2], enhanced to exploit UML 2 and the latest
software implementation technologies such as web services. In this section we will
simply refer to this method as KobrA, with the understanding that we are referring to
the latest version. This is just one of many possible methods that can be supported by
OSM tools, however. In fact, in principle, any method could be supported by an OSM
tool, since every method requires some kind of view of the software to be manipu-
lated (e.g. the source code).

2.1 KobrA

KobrA was developed with the goal of integrating model-driven development
(MDD), product line engineering (PLE) and component-based development (CBD)
[3] in a systematic way. To do this KobrA explicitly identifies three fundamental
dimensions, each representing an aspect of a system’s description that could vary
independently of the others.

1 This is a modified version of the paper presented at the 4th International Conference on

Evaluation on Novel Approaches to Software Engineering (ENASE '09), Milan, Italy, May
9-10, 2009.

www.manaraa.com

208 C. Atkinson, D. Stoll, and P. Bostan

The core dimension is the composition dimension in which (de)composition of the
system into components is elaborated (CBD). The second most important dimension
is the abstraction (or platform specificity) dimension in which the system is described
at different levels of platform specificity (MDD). The final dimension is the generic-
ity dimension in which the system is described in both generic (i.e. family level) and
specific (i.e. application level) forms (PLE). In principle, each dimension can vary
independently, i.e. they are orthogonal to one another. The key idea in KobrA is that
these conceptually orthogonal “dimensions” should be made explicit and that differ-
ent views of the system should be located somewhere in this space. As a UML based
method, KobrA also defines strict principles for using UML diagrams to view differ-
ent aspects of a component from different perspectives.

As shown in Figure 1, the views of a component are separated into two distinct
groups – those showing properties that can be seen from the outside by users of the
component (i.e. from a black box perspective), and those showing the properties that
can be seen from inside by the developer of the component (i.e. from a white box
perspective). The former group is known as the specification and the latter as the
realization. The black box and white box perspectives of a component have further
substructure as also represented in Figure 1. Basically each contains three different
views, or projections, which describe different kinds of information about the compo-
nent. The structural projection shows structural information using UML class dia-
grams. The operational projection shows information about the functionality of each
operation modeled in the form of operation specifications and interaction diagrams.
The behavioral projection focuses on the sequencing and algorithmic properties of the
component as manifest by state charts and activity diagrams. Although these were not
viewed as “dimensions” in the original version of KobrA, during the development of
KobrA 2 it was realized that the separation between black box and white box perspec-
tives, and the separation of information into different projections (or different aspects
of description) that can vary independently, represent dimensions in the sense used
above.

Generic components (for PLE) are described by adding an additional view, known
as the decision model, to the views already illustrated in Figure 1. The decision model
describes the different variants of the system in terms of decisions that the user can
make to decide which features he or she would like. Dependencies between decisions
can be specified using OCL constraints [4].

For example, it can be specified that one decision should automatically be resolved
when another one is resolved. A decision is further described by its possible Resolu-
tionSet. A resolution set represents the range of values (e.g. Boolean, Range or Val-
ueSet) that can be assigned to a decision when defining a particular variant. The
effects of each possible resolution value on the other views are defined, such as the
removal of model elements like classes, methods or even whole components. With a
generic component, every model element that is variable and represents a variation
point is marked by the stereotype <<variant>>. To create specific components from
the generic component, the associated decision model needs to be resolved by speci-
fying the appropriate values of the available ResolutionSet.

www.manaraa.com

 Orthographic Software Modeling: A Practical Approach to View-Based Development 209

Structural View
(UML class/object
diagrams)

Operational View
(operation specifications)

Behavioral View
(UML statechart diagram)

Specification

B
usiness

C
om

ponent Structural View
(UML class/object
diagrams)

Operational View
(UML collaboration
diagrams)

Behavioural View
(UML activity diagrams) Realization

Fig. 1. Component description views

2.2 KobrA Dimensions

Thanks to its principles of separating concerns and defining how different UML/OCL
diagrams can be used to portray different views of a system, KobrA is an ideal basis
for OSM. Indeed, our vision of an OSM modeling environment was originally moti-
vated by our aim to develop a tool to support KobrA. Although the original version of
KobrA did not take the idea of dimensions to its logical conclusion and identify each
independently-varying criteria as a true dimension (e.g. the encapsulation levels and
the projections), this is an easy step to take. The modeling principles embodied by
KobrA naturally suggest the following five dimensions:

Composition. This dimension covers the (de)composition of components into sub-
components. Selecting a point along this dimension corresponds to the specification
of the component or subcomponent which is currently being worked on.

Abstraction. This dimension addresses the platform specificity of a view. In other
words, selecting a point on the abstraction dimension identifies the level of detail at
which the component is being viewed. In principle there can be multiple points along
this dimension, but the most important are the platform independent model (PIM),
platform specific model (PSM) and implementation. The KobrA approach is mainly
concerned with the PIM level.

Encapsulation. The “public” encapsulation option provides a black box view of the
component. It describes all externally visible properties of a component and thus serves
as its requirements specification. The “private” encapsulation of a component provides
the white box view, and thus includes all the information in the black box view.

Projection. This dimension deals with the types of information contained in a view.
The projections currently available are the structural, operational, behavioral and varia-
tional projections. The latter contains the decisions that determine what aspects of a
component’s description are included in a specific variant and which parts are not.

Variant. This dimension enumerates the different variants of a system when follow-
ing a product line approach (e.g. “Mobile Edition”, “Enterprise Edition”). In addition,
the generic variant includes all possible features of the system and a decision model
for each component. Each particular variant is then associated with specific decision
resolution models, which are resolved in application engineering.

www.manaraa.com

210 C. Atkinson, D. Stoll, and P. Bostan

The KobrA method was designed before the notion of OSM was developed as a
notion for supporting and characterizing view-based development environments, and
is theoretically independent of it. However, we believe that KobrA needs to be sup-
ported by such an environment to be used effectively. In the following two sections
we explain how the two key ideas for achieving this are realized.

3 Dynamic View Management

Early work on view-based software engineering came to the conclusion that it was not
cost effective to derive views of software artifacts dynamically from a single underly-
ing model or representation [5]. However, since this work was carried out, the power
of processors and availability of storage has increased tremendously, and new tech-
nologies have emerged that specialize in performing transformations between differ-
ent models – so called model-driven development. Software development is also
increasingly becoming a collaborative activity, with multiple developers working
concurrently on different aspects of a system on different computers. We believe
these developments change the situation, and make the dynamic, on-demand genera-
tion of views practicable.

Our approach is based on the idea of creating a Single Underlying Model (SUM)
that contains all information about the system currently available, and separate view
models that contain the information to be displayed in specific views of the system.
When a new view is opened it is generated dynamically from the SUM via the appro-
priate transformation, and when new information about the system is added to the
view this is eventually added to the SUM. This basic principle of “on-demand” gen-
eration from a single underlying model is depicted in Figure 2.The boxes and arrows
within the ellipse in the center of Figure 2 are meant to represent the data elements
making up the SUM. Each of the four shown views is generated dynamically by
means of the appropriate transformation whenever the developer wishes to see the
view. No effort is needed to keep views consistent on a pairwise basis, because as
long as each is consistent with the SUM, it is consistent with all the other views. We
also regard traditional source code as a view, just like any other. Since high-level
views (e.g. models) can be generated at any time, for example after changes have
been added via a code view, this approach provides inherent support for “round trip”
engineering.

Java sourceJava sourceUML classesUML classes

Fig. 2. On-the-fly generation of Views

www.manaraa.com

 Orthographic Software Modeling: A Practical Approach to View-Based Development 211

3.1 SUM and View Metamodels

The metamodel for the SUM defines the concepts used to describe the properties of a
software system in the chosen method. The SUM metamodel is thus method specific,
and in this case therefore captures the concepts needed by the KobrA method. Since
this is a UML centric method, it makes sense for the SUM to be defined as a speciali-
zation of the UML. As an example, the UML 2 Association metamodel element is
reused. It is further specialized into Creates, Acquires and Nests, which describe rela-
tionships between KobrA Components and KobrA Classes. Acquires, for example, is
then constrained using OCL to ensure that only a KobrA Component can acquire
another Component (or KobrA Class) and that a KobrA Class is prohibited to acquire
anything. Elements from UML 2 that are not needed for our development method are
also excluded using OCL constraints. New elements introduced in the metamodel are
specialized from UML 2 elements and then further described and constrained.

From the point of view of standard MDD technology, a view is a normal model
which just happens to have been generated dynamically for the purpose of allowing a
user to see the system from a specific viewpoint. The only other requirement is that the
model has to have an associated concrete syntax by which it can be rendered. This can
be a graphical syntax, such as the UML, or a textual syntax, such as a programming
language like Java. A view can be represented in a general, standardized modeling
language like the UML that can be rendered by many tools, or it can be represented in
a highly specialized language that is specific to one single tool. Since the transforma-
tion technology used to generate and update the views can work with any source and
target metamodels, there is no theoretical constraint on what languages and tools can
be used. From a tool integration point of view, however, it is more practical to use
rendering engines and editors that are part of the same IDE family (e.g. Eclipse [6])
and/or that work on related languages (e.g. EMF or OMG metamodels). Like the SUM,
the view metamodels are all accompanied by extensive OCL constraints that define the
concrete well-formedness rules that instances of the metamodels must obey.

3.2 “On-the-fly” View Generation

The key technology that makes the dynamic generation of arbitrary views practical
are the transformation languages and engines provided by MDD environments. These
allow users to add new views to their environment in a straightforward way by defin-
ing how a view is generated from the SUM and what well-formedness rules it must
adhere to. While the writing of transformations is a non-trivial task, we believe that it
will involve far less effort than the consistency checking and verification activities
(e.g. inter-view consistency checking) that would otherwise have to be performed
manually. Any convenient transformation language can be used. We currently use the
ATLAS Transformation Language (ATL) [7].

For “read only” views it is only necessary to define a transformation in one direction
– from the SUM to the view. However, when views can also be edited, it is necessary
to define reverse transformations as well. The role of the reverse transformations is to
add new information about the system entered via a view to the SUM. This takes place
whenever the developer working with the view indicates that they would like to
“commit” the changes that they have made to the SUM. Before performing the reverse

www.manaraa.com

212 C. Atkinson, D. Stoll, and P. Bostan

transformation and/or while editing, constraints for the view can be checked to make
sure that it is well-formed. After the transformation, checking the SUM against consis-
tency rules can verify that the transformation worked as expected. Changes can be
made at various levels of granularity, from very fine-grained changes such as a name-
change to very large-grained changes where a large piece of the model is modified.
The choice reflects a balance between efficiency and the risk that changes may be
inconsistent with those made by another developer working on a different view.

Finally, in order to keep track of the history of changes made to the SUM, a trans-
actional versioning system is needed. Again this can be based on a standard version-
ing system such as CVS or subversion, or on versioning systems specifically tailored
to the SUM.

4 Dimension-Based View Navigation

The Dimension Based View Navigation scheme is perhaps the most novel aspect of
the orthographic modeling approach. It aims to mimic the way that users of CAD
tools can navigate around the views of a physical object by picking the different per-
spectives and viewpoints from which they wish to see the object. Each view can be
thought of as occupying a single cell in a multi-dimensional cube, which is selected
by picking a position in each dimension. Figure 3 shows a schematic picture of such a
cube, but only with three dimensions. One dimension has two positions to choose
from, one has three positions to choose from and one has four. In general, the cube is
multi-dimensional and each dimension can have an unlimited number of positions.

The advantage of such a navigation approach is that it frees the developer from
having to work with the navigation tree of each individual tool used to view each type
of artifact. With dimension-based navigation each view is identified by its location in
the dimension space rather than its location in a specific tool’s artifact tree. Different
native tools are still used to work with each view, but these are invoked automatically
by the OSM tool as needed.

We define two different roles in OSM: Developer and Methodologist. A developer
uses the dimension based navigation and manipulates the software system through
views, while the methodologist creates a navigation and view configuration for a
specific software development method, such as KobrA 2.

4.1 Dimensions

A dimension is any aspect of a software system’s description that can vary more or
less independently of other aspects, depending on how orthogonal the dimension is in
relation to the other dimensions. If all dimensions were fully orthogonal to each other,
all combinations of options along all different dimensions would be associated with a
view, i.e. all cells of the cube could be shown to the developer as a view. However,
dimensions are not always 100% orthogonal – there may be combinations of dimen-
sion options that don’t make sense and thus are impossible to show to the developer.
In other words, some cells might be empty (have no view).

The multi-dimensional cube is manifested in the GUI as a set of separate lists, each
holding the different options for a given dimension. To select a cell, the user therefore

www.manaraa.com

 Orthographic Software Modeling: A Practical Approach to View-Based Development 213

simply has to select an option from each list. Figure 3 (right-hand side) shows how
orthographic navigation around KobrA artifacts might be supported from a GUI per-
spective. Each list on the left hand side represents the possible choices in each dimen-
sion, and the diagram on the right hand side represents the actual view.

4.2 Language and Notation

The top five dimensions in the IDE shown in Figure 3 represent the KobrA-oriented
views that were described in section 2. In a sense they define the logical views of the
system supported in KobrA, because they characterize the basic nature of the informa-
tion that can be seen in each view, but they do not deal with how it is presented. This is
the job of the last two dimensions. They are an OSM tool’s mechanism for dealing with
the different language and notation options that can be used to depict a logical view.

Cell

Component-based
Software System

Dimension

D
im

en
si

on

Dim
en

sio
n

Dimension

D
im

en
si

on

Dim
en

sio
n

Fig. 3. Component navigation and Orthographic Software Modeling IDE

www.manaraa.com

214 C. Atkinson, D. Stoll, and P. Bostan

The language dimension identifies the basic language used to depict a view. We
use “language” here in the general sense used in the “domain specific language” field
to represent any formal language for representing information. This includes pro-
gramming languages like Java and modeling languages like UML. Since it was ori-
ented towards the UML, the original KobrA method envisaged that UML classes
would be used to represent the structural view. However, in general, any suitable
structural modeling language could be used such as SDL or OWL.

Identifying a language still does not provide all the information needed to depict a
view because most languages can be rendered using various concrete syntaxes. For
example, as well as the well known graphical syntax, UML diagrams can also be
represented in a textual form such as XMI or a human readable textual notation such
as HUTN. Even programming languages like Java can be rendered in various forms,
for example in XML or JavaDoc. The final dimension therefore defines the concrete
notation used to depict a view.

Internally, the OSM tool keeps track of which default editor should be used to de-
pict each view, so that once language and notation choices have been made, the sys-
tem can automatically invoke the editor needed to show the view on the right hand
side. In Figure 3, MagicDraw [9] is used for a UML class diagram. Since OSM pro-
vides inherent support for identifying languages and notations when working with
views, it provides a natural metaphor for integrating domain specific languages into
software engineering environments.

4.3 Tailoring

Software companies may tailor existing configurations or create new configurations
according to their specific software development method (explained in detail in the
next section). A common tailoring scenario is to add new languages and notations to
an existing configuration. One could for example add a component descriptor editor
which manages general component information for the PIM – Public – Structural
view. A new language and notation can be added in the simplest case by adding a new
metamodel for the language, a notation and associated transformations for the genera-
tion and synchronization of the editor’s data. If the language enhances the develop-
ment approach by adding new concepts, new elements and new consistency checks
might also have to be added to the core metamodel of the SUM. Also, whole new
dimensions could be added to existing approaches, such as a version dimension,
where each element represents a different version of the component-based system.

4.4 OSM Configuration for Specific Software Development Methods

The dimensions and their ordering/dependencies capture the characteristics of a de-
velopment methodology. A methodologist may create a configuration for software
development method (e.g. KobrA 2) by

− defining the dimensions and dimension elements (this corresponds to the lists in
the GUI in Figure 3), and

− associating them with views.

www.manaraa.com

 Orthographic Software Modeling: A Practical Approach to View-Based Development 215

A dimension can be static, dynamic, or mixed: A static dimension contains a fixed list
of dimension elements (e.g. the Projection dimension in KobrA 2). In contrast the
elements for a dynamic dimension (e.g. the Component dimension in KobrA 2) are
retrieved from the SUM. An example for a mixed dimension is the Variant dimension,
as there is always a “Generic” variant, but other variants depend on the current state
of the SUM. The methodologist can also specify the rights of the developer, i.e.
whether the developer is allowed to add, rename or delete elements. A developer
might be allowed to add new dimension elements (e.g. in the Variant dimension, he
might add a “Professional Edition” variant).

Once the methodologist has specified which dimensions and dimension elements
exist, he can provide a mapping from dimension element combinations to views. In
our current prototype, this is done with a mapping table. Specifying the mapping with
a table as described below is only one possibility. In the future, OCL-like constraints
might be used.

The table contains a column for each dimension and another one for a specific
transformation/view combination. Each row is an association of a dimension combi-
nation (or multiple combinations) with a view. A transformation/view combination
might be parameterized, e.g. with the currently selected component, so a “*” symbol
may be used to express that a mapping is valid for any element in a dimension. A
mapping table might look like this:

In a fully orthogonal configuration, there would be no empty cells (for which no
views can be generated), but in most configurations, there are. In the case of the map-
ping table, all combinations that are not listed correspond to cells that don’t have a view.

It is a design decision of the GUI how to deal with empty cells. To this end, we al-
low dependencies to be defined between dimensions, i.e. the selection of elements in
a dimension of higher precedence might restrict or change the possible selections in
dimensions of lower precedence (e.g. by marking them as non-selectable or only
showing selectable elements). The higher a dimension is listed on the left hand side
(of the GUI), the higher its precedence.

5 Case Study

The case study is based on a context-aware mobile tourist guide that consists of a mo-
bile client and a server-side tourist guide service. The server stores information about
tourist attractions and service descriptions that can be registered at the service. The
goal of this section is to show the various kinds of views that can be used to visualize
the system, and how they are reached via the dimension-based navigation metaphor.

5.1 Mobile Tourist Guide – Black Box

We start the case study by developing artifacts for the black box model of a compo-
nent at the PIM level, so we select Public from the Encapsulation dimension and PIM
from the Abstraction dimension.

In the Component dimension we create the top level component MobileTourist-
Guide as a new dimension element. Since we start with the structural description of
the publicly visible parts, the Projection dimension is set to Structural. In the Variant
dimension, we select the Generic version of the MobileTouristGuide. Once this cell of

www.manaraa.com

216 C. Atkinson, D. Stoll, and P. Bostan

the conceptual cube has been selected, the system offers an appropriate “editor” for
the view – in this case a UML class diagram editor.

Figure 4 shows the UML class diagram. It features the MobileTouristGuide which
is the “subject” according to KobrA’s principle of locality [1]. The specification of a
component only includes associations to externally visible components (marked in the
association by the stereotype <<acquires>>).

Furthermore, this specification contains an association to a variant class (Video)
and a variant method (getVideo) marked by the stereotype <<variant>>. The stereo-
type can be applied to whole components, to single methods or to variables. These
represent variation points that are administrated by the decision model which is also
presented in this section.

Every method of the MobileTouristGuide can be described further with an Opera-
tion Specification editor. The operation specification is publicly visible and is part of
the Operational projection. It is described in tabular form as shown in Table 1. The
Operation Specification Editor of the IDE offers some additional features like syntax
checking for OCL pre- and postconditions (if specified in OCL).

Table 1. Mapping cells of the cube to transformations and views

Comp. Abstr. Encaps. Projection Variant Lang. Not. Transformation/View
* PIM Public Structural * UML Graph. …
* PIM Public Operational * OpSpec Tabular …

… … … … … … … …

Fig. 4. MobileTouristGuide – PIM – Public – Structural – Generic – UML Class Diagram –
Graphical

5.2 Mobile Tourist Guide – White Box

The artifacts of the public encapsulation (i.e. black box information hiding) view of a
component describe what a component does, i.e. what services it offers to users. The

www.manaraa.com

 Orthographic Software Modeling: A Practical Approach to View-Based Development 217

artifacts of the private encapsulation describe how the promised functionality is real-
ized, including interactions with (sub-)components. To see the white box views of a
component we therefore need to set the Encapsulation dimension to Private.

Like the black box structural view in the previous subsection, in the white box
structural view we can see the UML class diagram of the MobileTouristGuide, but
this time with additional elements needed for the realization. The dimension Variant
is included in the generic model using the stereotype <<variant>> as in the black box
view to mark variation points that are used in the decision model for variants of a
product family. In addition to the mentioned relationship <<acquires>> which
expresses the fact that the subject needs the acquired component to fulfill its own
mission, a new relationship, called <<creates>>, is possible in the Realization class
diagram. This relationship declares that the subject is fully responsible for the sub-
component, i.e. its creation and destruction.

The operational Projection in the white box views contains UML communication
or sequence diagrams which show how a particular function interacts with other arti-
facts of the system. The behavioral projection shows the algorithms of functions using
a UML activity diagrams.

Table 2. MobileTouristGuide – PIM – Public – Operational – Generic – Operation Specifica-
tion – Tabular

Name searchTouristAttractions
Description Searches for tourist attractions depending on the user’s

preferences and the current context (e.g. location, time,
weather)

Receives -
Returns TouristAttractionList
Sends TouristGuideService.getTouristAttraction()
Reads ContextSet, Preferences
Changes TouristAttractionList
Body -
Precondition Preferences have been set up, Context Sources are

available
Postcondition TouristAttractionList contains suitable attractions

The decision model is associated with the Variational projection and, as the
decisions are not yet resolved, the Generic variant. As mentioned before, the varia-
tion points of a component are administrated via the component’s local decision
model.

In Table 2, the private encapsulation decision model of the MobileTouristGuide is
shown for the structural projection. It contains questions that have to be resolved in
order to create actual product versions. The example shows a decision that is related
to two variation points and another decision related to three variation points. For each,
the given ResolutionSet defines the possible values that can be assigned within a deci-
sion. The effects clause specifies which action is performed dependent on the resolu-
tion value. In this example, effects are applied to the UML class diagram shown
above and the UML communication diagram for searchTouristAttractions().

www.manaraa.com

218 C. Atkinson, D. Stoll, and P. Bostan

Table 3. MobileTouristGuide – PIM – Private – Variational – Generic – Decision Model –
Tabular

 1 2
Description Is the mobile client device capable of playing

videos?
What visibility should be assignable to context items
on the mobile client? (Public context items are
transmitted to the server, private context items not)

Component MobileTouristGuide MobileTouristGuide
Encapsulatio
n

Private Private

Projection Structural Structural
Constraints -- --
ResolutionSe
t

Boolean ValueSet {Public, Private, PublicAndPrivate}

Effects ResolutionValue: True
(1) remove stereotype <<variant>> at Class Video
(2) remove stereotype <<variant>> on operation
MobileTouristGuide.getVideo()

ResolutionValue: False
(1) remove Class Video
(2) remove operation
MobileTouristGuide.getVideo()

ResolutionValue: Public
(1) remove <<Komponent>> PrivateContextMatcher
(2) remove association PrivateContextMatcher-
MobileTouristGuide

ResolutionValue: Private
(1) remove stereotype <<variant>> at Komponent
 PrivateContextMatcher

ResolutionValue: PublicAndPrivate
(1) remove stereotype <<variant>> at Komponent
 PrivateContextMatcher

Stakeholder Application Engineer Application Engineer

6 Conclusions

In this paper we have presented a new paradigm for organizing the many views that
need to be manipulated in modern software engineering methods and have outlined
the key features of a tool to support it. Known as Orthographic Software Modeling,
the approach mimics the orthographic projection principle used in CAD tools to visu-
alize physical engineering artifacts. By doing so, it raises the level of abstraction at
which developers interact with tools by hiding the idiosyncrasies of specific editors
and tools. We have built a prototype version of this tool in Eclipse, using a heteroge-
neous mix of well known editors to render and manipulate specific views, such as the
Eclipse Java editor for Java views, and MagicDraw for UML-oriented views. We are
currently implementing a more generic view generation engine with extended con-
figuration and plug-in capabilities.

To the best of our knowledge, there is currently no approach that combines on-
demand view generation with the approach of dimension-based navigation. Glinz et al.
[10] feature a systematic, hierarchical modeling approach and a tool with a fisheye
zooming algorithm that allows models to be visualized with different levels of detail.
Although are some similarities such as the classification in structural and behavioral
views, the development approach mainly uses non-UML views for structural and behav-
ioral aspects of a software system while the KobrA method makes heavy use of UML
diagrams. Its navigation concept also differs from dimension-based navigation. The
importance of view-based modeling is reflected by various approaches, starting from the
Zachman Framework [11] to approaches like the Reference Model of Open Distributed
Processing (RM-ODP) [12]. However, most only implicitly or informally define consis-
tency rules between the views and don’t provide a flexible navigation mechanism. The
Zachman Framework gives only short hints about inter-view consistency and while

www.manaraa.com

 Orthographic Software Modeling: A Practical Approach to View-Based Development 219

RM-ODP is one of the few approaches that allow the definition of correspondences
between views, their practical realization is the subject of current research [13].

Our approach includes an extensible navigation concept where customized dimen-
sions, dimension elements, languages and notations can be integrated in a systematic
and straightforward way. It also allows the users to define a dominance hierarchy
between the dimensions such that dimensions near the top of the architecture influ-
ence what is available for dimensions lower in the hierarchy. Indeed, it is possible that
a choice in a higher level dimension may remove a lower dimension completely (be-
cause all the cells for that row are empty). We believe that this definition of dimen-
sion dominance relationships and dependencies actually goes a long way to capturing
the core ideas that underpin a paradigm. For example, in an MDD focused project, the
abstraction dimension would be the most dominant, whereas in a product line engi-
neering oriented project, the variant dimension would dominate. We therefore claim
that OSM tools are inherently able to support multiple paradigms, and thus can be
used as a vehicle for bringing them together, or using them in different phases of
development, whatever best fits the needs of the project in hand.

References

1. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Paech, B., Wüst, J., Zettel, J.: Component-Based Product Line Engineering with UML.
Addison-Wesley Publishing Company, Reading (2002)

2. Atkinson, C., Bostan, P., Brenner, D., Falcone, G., Gutheil, M., Hummel, O., Juhasz, M.,
Stoll, D.: Modeling Components and Component-Based Systems in KobrA. In: Rausch,
A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Ex-
ample. LNCS, vol. 5153, pp. 54–84. Springer, Heidelberg (2008)

3. Szyperksi, C., Gruntz, D., Murer, S.: Component-Software – Beyond Object-oriented Pro-
gramming, 2nd edn. Addison Wesley / ACM Press (2002)

4. Object Management Group: Object Constraint Language Specification, Version 2.0 (May
2006), http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf

5. Finkelstein, A., Kramer, J., Goedicke, M.: ViewPoint Oriented Software Development. In:
Proc. of 3rd Int. Workshop on Software Engineering and its Applications, Toulouse (1990)

6. Eclipse Development Platform (visited May 2008), http://www.eclipse.org
7. The ATLAS Transformation Language (Visited May 2008),
 http://www.eclipse.org/m2m/atl/

8. Object Management Group, Human-Usable Textual Notation, v1.0 (April 2008),
http://www.omg.org/cgi-bin/doc?formal/2004-08-01

9. MagicDraw (Visited May 2008), http://www.magicdraw.com
10. Glinz, M., Berner, S., Joos, S.: Object-oriented Modeling with Adora. Information Sys-

tems 27(6), 425–444 (2002), http://www.ifi.unizh.ch/req/ftp/adora.pdf
11. Zachman, J.A.: The Zachman Framework: A Primer for Enterprise Engineering and Manu-

facturing (Visited September 2009), http://www.zachmaninternational.com
12. ISO/IEC and ITU-T. The Reference Model of Open Distributed Processing. RM-ODP,

ITU-T Rec. X.901-X.904 / ISO/IEC 10746 (1998)
13. Romero, J.R., Jaen, J.J., Vallecillo, A.: Realizing Correspondences in MultiViewpoint

Specications. In: Proceedings of the Thirteenth IEEE International EDOC Conference,
Auckland, New Zealand (September 2009)

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 220–233, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Dynamic Management of the Organizational Knowledge
Using Case-Based Reasoning

Viviane Santos, Mariela Cortés, and Márcia Brasil

State University of Ceará
Av. Paranjana, 1700, Cep 60.740-000, Fortaleza, CE, Brazil

{viviane.almeida,mariela,marcia.abrasil}@larces.uece.br

Abstract. Software process reuse involves different aspects of the knowledge
obtained from generic process models and previous successful projects. The
benefit of reuse is reached by the definition of an effective and systematic proc-
ess to specify, produce, classify, retrieve and adapt software artifacts for utiliza-
tion in another context. In this work we present a formal approach for software
process reuse to assist the definition, adaptation and improvement of the or-
ganization’s standard process. The Case-Based Reasoning technology is used
to manage the collective knowledge of the organization.

1 Introduction

Considering the forward dependency between the development process quality and
the product quality, the deep knowledge of the activities involved in the process and
their management are critical factors for the organizational success.

In high level, the software development process defines a formal sequence of ac-
tivities related to a set of artifacts, people, resources, organizational structures and
constraints for turning user requirements into software. This knowledge captures the
guidelines to drive software development in a specific domain and/or context.

The definition of a process for software development is a complex task since it re-
quires experience and combines the knowledge of diverse technological and social
aspects. The utilization of standards for the process definition [1][2][3][4] is recom-
mended in norms, processes and maturity models. However, the process model must
be adapted to fit the organization characteristics.

Software process models describe the organization knowledge and, thus, models
that enhance successful experiences must be disseminated and recommended for
reutilization across the organization [2][5]. The process consolidation is achieved
through the systematic reuse and the incremental capture of feedback, looking for the
continuous improvement.

The purpose of the process reuse technology is to support the process definition
and improving on the basis of standard processes, according to norms and quality
models, and learned experiences [6]. Dynamic and context-depending aspects of the
knowledge in software development turn the Case-Based Reasoning approach (CBR)
[7] useful as it provides a broad support for the dynamic management of the organiza-
tional knowledge and continuous incremental learning necessary for the definition
and improvement of software development.

www.manaraa.com

Dynamic Management of the Organizational Knowledge Using Case-Based Reasoning 221

In this work we describe an approach for definition and reuse of the organizational
standard process, on the basis of models, standards, quality norms, and previous ex-
perience, in accordance with the organizational reality and characteristics. In addition,
on the basis of the reuse process results, an adaptation process is presented. The CBR
technology is used for the management of the repository and the retrieval of assets.

This work is organized as follows: in Section 2 the CBR technology is briefly ex-
plained. In Section 3 the process reuse using CBR is presented. In Section 4 a case
study is illustrated. Finally, final considerations are presented.

2 Case-Based Reasoning

The CBR technology solves problems in a specific situation, through previous similar
situations [8]. A case comprises a pair problem that describes the context of an actual
case occurrence, and solution that presents the problem solution. Past cases are used
to hint strategies to solve new similar problems [9].

A CBR system is composed by 4 basic elements [7]: knowledge representation,
similarity measure, adaptation and learning.

The knowledge representation consists on the description of the relevant informa-
tion for the cases, in order to assess the reuse.

The similarity measure establishes the global similarity degree between a base-case
and a new problem under consulting. This measure is based on a heuristic method [9].
The retrieval process results in a set of ranked cases that are based on the global simi-
larity measure.

The utility of base-case to solve a problem is proportionally related to the effort re-
quired to adapt it to fit the specific context [9]. This process involves knowledge reuse
in problems solutions along the knowledge transference from the previous case to the
actual case.

The ability to learn from early experiences is inherent in a CBR system. The
continuous learning contributes to increase the system capacity to improve their inter-
pretations to solve new problems. In this sense, feedback about the soundness and
effectiveness about their interpretations is required.

3 Process Reuse Approach

The approach for process reuse is presented in Fig. 1 [10]. The main component is the
Processes Assets Repository which is designed to store reusable process models and
their feature-value representations. This representation involves a set of relevant prop-
erties to describe each case, and the values for these properties including numeric,
text, pre-defined terms, etc. The utility of a specific case from the repository in the
context of a new case under consulting is enabled using this representation.

The Search Engine uses CBR technology to retrieve similar cases through the similar-
ity measurement on the basis of process and project features. Feature-value repre-
sentations must be defined for the new case, and for the base-cases in the repository.

www.manaraa.com

222 V. Santos, M. Cortés, and M. Brasil

Fig. 1. Approach for process reuse

The reutilization involves the adaptation of a previous solution for a similar case,
using an appropriate method [9]. After its adaptation and execution in the new project,
the new case is evaluated in order to examine its effectiveness and capture the infor-
mation to make the representation for this new case. Then, the new case can be in-
cluded into the repository, increasing the feature-value representation.

3.1 Representation of Organizational Assets in the Repository

The reutilization of cases is enabled whenever the cases will be indexed and stored
appropriately in the process assets repository, in such a way to make possible its effi-
cient retrieval. The suitable representation of the process assets is a critical factor for
the success of the method, since the similarity degree for the correct retrieval of the
cases is measured on the basis of this representation. The similarity concept consists
of establishing an estimate of the utility of a previous case stored in the repository, in
the context of the current case on the basis of the observed similarity among the rep-
resentations of both cases [7].

The similarity types are restrictions applied to the representation features, to estab-
lish its correspondence or co-occurrence among cases [11]. The similarity types used
in this work are:

− Numeric (NUM). Positive integer or real numbers
− Qualitative for Fixed Items (QFI). Predefined Terms
− Qualitative for Variable Items (QVI). Registered terms with possibility of new

items

The similarity between cases is based on the comparison of the features in the rep-
resentation and the corresponding values. In this sense, several studies related to the
classification of the process assets for reuse in other contexts can be cited [6][11][12]
[13][14]. The representation of the assets in the repository proposed in this work is
presented in Table 1. The features had been organized in agreement to the target in
process and project features.

www.manaraa.com

Dynamic Management of the Organizational Knowledge Using Case-Based Reasoning 223

Table 1. Representation of the assets in the repository

Scope j Feature Description
Similarity

Type
1 Life-Cycle

Model
Project life-cycle model, such as Cascade,
Iterative Incremental, Evolutionary, Spiral.

QVI

2 Complexity Project complexity: High (including critical
and advanced functionalities), Medium
(including feasible functionalities), Low
(including simple functionalities).

QFI

3 Size Project size regarding the functionalities
quantity: Large, Medium or Small.

QFI

4 Team Size Project integrant number. NUM
5 Time Project duration in months. NUM
6 Software

Engineering
Knowledge

Knowledge level in Software Engineering:
High (theory e practical), Medium (theory
only), Low (none knowledge).

QFI

P
ro

je
ct

7 Development
Paradigm

Project development paradigm, such as
Structured, Object Oriented, etc.).

QVI

8 Development
Model

Software development models, like RUP,
XP, SCRUM, etc.

QVI

9 Maturity
Model

Maturity model, for example, CMMI,
MPS.BR, etc.

QVI

10 Maturity Level Specific maturity level related to the maturity
model specified previously. It can be, for
example, 1 to 5 (CMMI and ISO/IEC 15504)
or G to A (MPS.BR).

QVI

11 Complexity Process complexity based on the maturity
levels: High (advanced levels), Medium
(intermediary levels), Low (low levels).

QFI

12 Process Specific processes, such as Requirements
Management, Project Planning, Quality
Assurance, Configuration Management.

QVI

P
ro

ce
ss

13 Experience on
Process Usage

Team’s experience on software process
usage: High (process used in more than 15
projects), Medium (process used in a range
of 5 to 14 projects), Low (0 to 4 projects).

QFI

3.2 Retrieval Process

The most appropriate solution for the current problem is retrieved from the repository
through similarity measurement. The greatest value in this measurement indicates
greater similarity between the cases.

In CBR, several techniques can be applied for data retrieval. In [8] the algorithm
to calculate the similarity is based on k-NN technique, where the global similarity
(SIM) between two cases (a and b) is defined by the weighted sum of the local simi-
larities (simj) for each feature (Aj).

∑
=

×=
n

j
jjjj bAaAsimwbaSIM

1

))(),((),((1)

www.manaraa.com

224 V. Santos, M. Cortés, and M. Brasil

The weight (wj) reflects the relevance of a feature (Aj) concerning the similarity of
cases. This factor is determined by the user and is measured by the values: High
(100), Medium (50) and Low (10). The features considered more important for the
problem resolution from the user’s viewpoint, possess higher weights.

The base-cases considered as sufficiently similar can be proposed to the user as re-
use candidates. Note that if the same weight is assigned to all the features, the base-
case that attends the greater number of features must be the suggested one.

The local similarity is calculated in accordance with the similarity type of each fea-
ture. For features of NUM and QFI similarity types, it considers the computation of
distance (dj) between each feature values in the cases a and b, as presented in the
formula (2). Furthermore, for features of QVI similarity type, the local similarity is
specially calculated through the formula (6) and is detailed later in this section.

),(1
1

bad
sim

j
j +

= (2)

This measurement must be normalized [15] to avoid over influence of a metric by the
great range of values of the features. The normalization process uses smallest and
greatest values in the repository to linearly produce values between 0 and 1.

The distance between two features of numeric (NUM) or qualitative for fixed items
(QFI) similarity type is calculated on the basis of a proportionality relation between
the values, as expressed below:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=
)min()max(

)min()(

)min()max(

)min()(
),(

jj

jj

jj

jj

j AA

AbA

AA

AaA
bad

(3)

Finally, to calculate the distance between features of QVI similarity type, a taxonomy
is used to hierarchically represent the relationships among the terms (Fig. A1). A
hierarchical arrangement implies in a complex similarity relation, which is based on
the object position in the hierarchy. In a taxonomy, as deeper the nodes are located in
the hierarchy, greater is the similarity value. In the same way, whenever the nodes are
closer to the root of the taxonomy the similarity goes to zero. The measurement for a
new case may require the inclusion of new terms in the taxonomy.

Considering na and nb different nodes in a taxonomy, the similarity between those
nodes, simj(na, nb), proposed by [16] consists of:

()
() () ()rootparentparentbparenta

rootparent
baj nnNnnNnnN

nnN
nnsim

,2,,

,2
),(

×++
×

= (4)

where N(na, nparent) and N(nb, nparent) are the number of edges in the path from the
corresponding nodes and their common parent in the hierarchy, and N(nparent, nroot) is
the number of edges among this common parent node and the root of the taxonomy.
This measure is interesting because it considers the common parent and the root of the
taxonomy o normalize the measurement among the nodes. [17]. If the nodes na and nb
are common, the formula (4) isn’t applicable. In this case, the similarity between
those nodes is considered equal to 1.

To illustrate this concept the equation (5) presents the similarity measurement be-
tween the models D-CMM and RUP-ST in the taxonomy of Development Models

www.manaraa.com

Dynamic Management of the Organizational Knowledge Using Case-Based Reasoning 225

(Fig. A1). The common parent node between those nodes is the Hybrid node, there-
fore the number of edges between them is 1 (one). And the number of edges from this
common parent node to the root, Development Models, is also 1 (one). Below, there is
the calculation of the similarity measurement between those nodes:

5,0
4

2

1211

12
),(==

×++
×=baj nnsim (5)

3.3 Adaptation Process

Adaptation involves the process to transform the retrieved results into an appropriated
solution for the currently problem. The adaptation process can be realized following
different approaches [8]. In this sense two approaches can be suggested: if the simi-
larity measurement of the retrieved process in the top of the ranking is satisfactory1, a
minimal or null adaptation can be required. In other case, when none of the retrieved
processes fulfills the requirements for the new case in appropriate manner, a composi-
tional approach is proposed.

In this approach [18], the solution is composed by elements from different cases,
on the basis of the most similar base-cases returned from the previous step. In this
sense, the maximization of the local similarities of each feature can be used to build a
new case in order to match the greatest level of similarity to meet the features of the
current case, considering the dependencies and constraints among them. Fig. 2 pre-
sents, in general way, the returned base-cases with its features and similarity values
against the new case.

Thus, the maximized global similarity of the new case (called GlobalSIM) is calcu-
lated through the maximization of the local similarity (LSim) of each feature from the
retrieved base-cases, as presented below:

() () () ()()∑
=

=
N

i

MAiLSimAiLSimAiLSimAiLSimGlobalSIM
1

321 ,...,,,max (6)

where N represents the quantity of features and M the quantity of retrieved base-cases. In
addition, already dependencies and restrictions between features from the same base-case
must be considered in the composition of the new case. Similarly, features from different
cases can be incompatible. These restrictions must be considered in the composition
process. In this scenario, the following dependencies and constraints were identified:

• Development Model and Maturity Model;
• Maturity Model and Maturity Level;
For example, if the Maturity Model feature value required is SW-CMM or CMMI,

the Maturity Level feature must be values from 1 to 5. Similarly, if the required De-
velopment Model is XP [19], neither Maturity Model nor Level Maturity can be used.
In this sense, a recently published report of the Software Engineering Institute [20]
considers the possibility of joint the use of agile development methods and CMMI
best practices as a way to improve the performance.

1 The satisfactory level is determined by the average of the base-case local similarities percent

to represent the adherence of a base-case against the current case. The user can restrict the
ranking result through specifying a minimum percent of satisfactory level, e.g. 60%.

www.manaraa.com

226 V. Santos, M. Cortés, and M. Brasil

 Local Similarity of Base-Cases related to the current case Feature
values

Feature Base-Case 1 Base-Case 2 … Base-Case M New Case
Feature 1 LSim(A11) LSim(A12) … LSim(A1M) V(A1j)
Feature 2 LSim(A21) LSim(A22) … LSim(A2M) V(A2j)

… … .. … … …
Feature N LSim(AN1) LSim(AN2) … LSim(ANM) V(ANj)

Fig. 2. Similarity values of Base-Cases relative to the feature values of the current case

The selection of the features to compose the new case involves the maximization of
the global similarity (GlobalSIM), and the satisfaction of the dependencies and restric-
tions between the features to avoid conflicting and incompatible values. In Fig. 3 is
presented a preliminary and generic algorithm to describe this approach. Finally, the
new case can be instantiated from assets corresponding to the selected features.

3.4 Learning

The learning process in the CBR system [8] is done through the feedback about the
performance of the new case, when the project is closed. At this moment, the effec-
tiveness of the new case is evaluated by the user before the storage in the repository.

The case performance evaluation consists of 3 steps, which are global similarity
comparison between preliminary and real contexts representation; reuse degree be-
tween the new case and the selected base-case; and specification of the base-case
success level in the new case. These steps will be detailed as follows.

3.4.1 Global Similarity Comparison
When the project is closed, the representation for the executed process can be differ-
ent from the representation used in the recovery phase. In order to reach the process
improvement the comparison between the preliminary and the real representation can
be useful to evaluate the adherence level of the adopted process.

The comparison between both representations, called Global Similarity Compari-
son (GSC), is based on a proportionality measurement appointing the occurrences of
changes in the representation along the project execution. The measurement is
obtained on the basis of the global similarity measurement (SIM), calculated accord-
ing to the Section 3.2. The GSC measurement is presented in (7) and evaluates the
similarities between the selected base-case representation (a) against the preliminary
representation (b) and the representation of the executed process (b’).

100
),(
)',(

100 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×=
baSIM

baSIM
GSC (7)

When the global similarity values SIM(a,b) and SIM(a,b’) remains the same, the index
will return zero, meaning that the similarity values of the contexts stay the same. In
this scenario, the selected base-case would stay in the same place of the ranking of
similar base-cases. In the other hand, if the GSC is a value greater than zero, it means
that the real context is more similar to the selected case than the

www.manaraa.com

Dynamic Management of the Organizational Knowledge Using Case-Based Reasoning 227

Fig. 3. Algorithm to maximize the global similarity

preliminary context, which possibly the user has match the appropriate case to meet
the project or organization needs. Otherwise, if the GSC is a value less than zero, it
means that the real context is less similar to the selected case than the preliminary
context, which possibly the user´s choice for the base-case was inappropriate to meet
the project or organization needs, and several modifications was required.

3.4.2 Reuse Degree
The Reuse Degree (RD) is another evaluation metric that appoints the reuse percent-
age of the selected base-case (a), against the new case after the project’s end (b’). It is
obtained by the mapping of all activities components contained in cases a and b’, such
as name, type, artifacts, resources, roles, connections, etc., in order to establish the
reuse level. The RD formula is presented below:

C

n

q
baSimC

Nm

N

RD
q

×
=
∑

=1
)',(

 (8)

where n is the number of activities from b’ and m is the number of activities from a.
NSimC is a function that returns the number of similar components of a specific activity
(q) between a and b’. To consider a component similar, it is necessary to establish a
similarity threshold. Since this metric evaluates the level of reuse, then great variation
in the new case should result in low reuse. So, in this research, the similarity threshold
is considered a value greater or equal to 90%, because if the activity component is
quite different, exceeding the similarity threshold, it is not considered by the function
NSimC. The NC is the number of activity components contained in a case.

Analyses about the result of this metric can be useful to support the organization deci-
sion on the new case. With this estimation, the organization may identify how much the
selected base-case was reused in the new case. And the user can realize whether the base-
case is satisfactory to their specific needs, or may conclude that the adaptation made to

www.manaraa.com

228 V. Santos, M. Cortés, and M. Brasil

the process executed discarded some important components of the original base-case that
should be applied to processes and the organization didn’t take the advantages of reuse.

3.4.3 Success Level
The success level is a subjective metric fed by the user whenever an executed process
is evaluated. This metric is stored as related information about the base-case to regis-
ter the user feedback about its utility and effectiveness of the process. This evaluation
is represented by a value in the range 0 to 10.

This information is useful to the future adoption of the base-case, and contributes
in the search for the continuous improvement of the process, since cases with greater
success levels will be prioritized in the search engine results.

3.5 Retention

The retention consists in the incorporation process of what is useful in a new problem
resolution [7] [8]. Retain continually is fundamental to increment the repository with
new solutions. In this research, that phase occurs after the evaluation of the executed
process, in such way to extract the knowledge for later use and to integrate cases in
the existing representation structure.

Depending on the user evaluation of the executed process, the user may choose to
distill the process or not [11]. Distilling a process means to transform it in a base-case,
removing its specific project details, like schedule, people, etc., leaving only the suit-
able information to reuse in other projects and also store its context representation.

4 Case Study

In this section, a case study is presented to illustrate the approach for process reuse. In
this sense, the description of a new project is detailed assigning values to the wished
features for process and project. Note that the process for the standard process definition
and the instantiation for an already defined process is the same. In the table below
(Table 2) the definition of the desired features for the new case are presented. The Scope
and Feature columns represent the feature’s classification as presented in Table 1. The
Weight and Value columns refer to properties of the new project, about the relevance
and value for each feature, respectively, from the user viewpoint.

To illustrate the retrieval process, the RUP for Small Teams (RUP-ST) model [21] and
its respective representation are used. It is important to stand out that the repository of
process assets must be wide and diversified in order to take care of the most diverse situa-
tions. Table 3 presents the values for each feature for a project based on the RUP-ST.

The global similarity is calculated on the basis of their representation in order to
determine and retrieve from the repository the most adherent case to fit the new case
through minor efforts.

The local similarity for Feature is calculated in accordance with the similarity
type, as referred to Section 3.2, and is described in the Comparison column. The
product of this value times the Weight, presented in Table 2, determines the Local
Similarity (LS). Finally, the addition of all local similarities is presented in the line
Global Similarity, in the current case 330.

www.manaraa.com

Dynamic Management of the Organizational Knowledge Using Case-Based Reasoning 229

Table 2. Feature definition for the case study

Scope Feature Weight Value

Life-Cycle Model Medium Spiral
Complexity Low Medium
Size Medium Medium
Team Medium 5
Time Low 6
SE Knowledge Low Medium

P

ro
je

ct

Development Paradigm High O-O
Development Model Low -
Maturity Model Low -
Maturity Level Low -
Complexity Medium Low
Process Medium Project Management

P

ro
ce

ss

Experience on process usage Low Low

A further analysis about the local similarity results can be used to guide the user
during the adaptation process. In this sense, the desired features from the retrieved
cases can be composed in a new base-case in order to optimize (maximize) the global
similarity. To illustrate this approach, the similarities measurements for project in-
stances of ProGer [22] and D-CMM [23] models are used in order to select the fea-
tures with higher local similarity value (Table 4).

The global similarity result for each base-case appoints the RUP-ST model as the
most adherent to the current case, since it presents the greatest measurement value
(330).

Table 3. Global Similarity about RUP-ST

Scope Feature Base-Case Comparison LS
Life-Cycle Model Iterative/ Incre-

mental
0,5 25

Complexity Medium 1 10
Size Medium 1 50
Team 5 1 50
Time 5 0,5 5
SE Knowledge High 0,5 5

P
ro

je
ct

Development Paradigm O-O 1 100
Development Model RUP 0 0
Maturity Model - 0 0
Maturity Level - 0 0
Complexity Medium 0,5 25
Process Project Management 1 50 P

ro
ce

ss

Experience on process
usage

Low 1 10

Global Similarity 330

www.manaraa.com

230 V. Santos, M. Cortés, and M. Brasil

Table 4. Global Similarity about ProGer and D-CMM

Scope Feature LS ProGer LS D-CMM
Life-Cycle Model 0 35
Complexity 10 10
Size 50 50
Team 40 25
Time 8,6 8,6
SE Knowledge 10 6,6

P
ro

je
ct

Development Paradigm 100 100
Development Model 0 0
Maturity Model 0 0
Maturity Level 0 0
Complexity 50 25
Process 50 50

P
ro

ce
ss

Experience on process usage 10 5

Global Similarity 328,6 315,2

In another side, using the compositional approach, a new base-case can be obtained
on the basis of the maximization algorithm (Fig. 3). The maximized global similarity
for the new case, detailed in Table 5, is 373.6. Thus, the new case created through this
approach represents the most adherent (similar) model to the current case, involving
lower effort for their adaptation and reuse in the new situation.

The existence of features with the same local similarity value is resolved by the selec-
tion of the feature from the first case analyzed; however, is still a need for better research
to assess whether this is right. Similarly, the feature that did not have values for the current
case was disregarded, avoiding their influence in the calculation of similarity.

The process evolution and improvement is realized along its adaptation, reuse,
performance evaluation and retention in the repository. Reuse evaluations along di-
verse projects can guide the adoption of the organization’s standard-process.

Table 5. Maximizing the Global Similarity

Feature Value Process LS

Life-Cycle Model Iterative D-CMM 35
Complexity Medium ProGer 10
Size Medium ProGer 50
Team 5 RUP-ST 50
Time 7 ProGer 8,6
SE Knowledge Medium ProGer 10
Development Paradigm O-O ProGer 100
Complexity Low ProGer 50
Process Project Management ProGer 50
Experience on process usage Low ProGer 10

Global Similarity 373,6

www.manaraa.com

Dynamic Management of the Organizational Knowledge Using Case-Based Reasoning 231

5 Final Considerations

The proposed approach promotes the reutilization of process assets as a start point for
the elaboration of a standard process to meet the organizational needs. This approach
is based on Case-Based Reasoning. It supplies a mechanism for the feature-value
representation of cases in the assets repository. The cases are classified according to a
set of relevant features to allow an efficient normalized retrieval. An example of simi-
larity measurement was presented.

In addition, an optimization algorithm for the construction of the new case is pre-
sented. This model is composed of features from different processes, in order to max-
imize the global similarity, increasing the adherence of the composed process about
the new case, and decreasing the adaptation efforts.

To ensure the learning process, it provides a case evaluation at the project’s end,
trough two metrics: the global similarity comparison, which presents the context rep-
resentation variation, and the reuse estimation, which presents the reuse level of the
selected base-case through the new case. Also, there’s a subjective evaluation where
the organization can infer about the new case satisfaction through establishing a suc-
cess level, this evaluation is an organization-dependent decision and considers its
characteristics and needs.

After that, the organization may decide the purpose of the new case. It is strongly
suggested to feed the repository with the new case and its feature-value representa-
tions in order to provide reuse in future similar projects.

This approach allows the construction of the dynamic organizational knowledge
and foresees the continuous improvement of the process through the permanent feed-
back to the repository involving the incorporation of its successes and failures. The
learning capability of CBR systems contribute to the adoption of better and more
efficient solutions. Currently, a management tool to support this approach is under
development.

Acknowledgements. This work was supported in part by FUNCAP, Brazil.

References

1. The International Organization for Standardization and the International Electrotechnical
Commission, Standard for Information Technology—Software Life Cycle Processes. Ge-
neva, Switzerland (2008)

2. The International Organization for Standardization and the International Electrotechnical
Commission, ISO/IEC 15504 Information Technology Process Assessment Part 5 (2006)

3. Software Engineering Institute, CMMI for Development, version 1.2 edition. SEI, Carne-
gie Mellon University, Pittsburg (2006)

4. Softex, Guia Geral MR-MPS (Versão 1.2) (2007),
http://www.softex.br/mpsbr/_guias/guias/
MPS.BR_Guia_Geral_V1.2.pdf

5. PMI Project Management Institute, A Guide to the Project Management Body of Knowl-
edge: PMBOK Guide. PMI, 3rd edn. (2004)

www.manaraa.com

232 V. Santos, M. Cortés, and M. Brasil

6. Perry, D.: Practical Issues in Process Reuse. In: Baldonado, M., Chang, C., Gravano, L.,
Paepcke, A. (eds.) ISPW, International Software Process Workshop, Int. J. Digit. Libr,
vol. 1, pp. 108–121. IEEE Computer Society Press, France (1997)

7. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)
8. Pal, S., Shiu, S.: Foundation of soft case based reasoning, 5th edn. Wiley series in intelli-

gent systems (2004)
9. Mille, A.: From case-based reasoning to traces-based reasoning. Annual Reviews in Con-

trol 30(2), 223–232 (2006)
10. Santos, V., Cortés, M.: Software Process Reuse Using Case-Based Reasoning Accepted for

publication in the ICAART´2009. In: International Conference on Agents and Artificial In-
telligence, Portugal (2009)

11. Reis, R., Reis, C., Nunes, D.J.: Automated Support for Software Process Reuse: Require-
ments and Early Experiences with the APSEE model. In: 7th International Workshop on
Groupware. IEEE Computer Society Press, Darmstadt (2001)

12. Oliveira, K., Gallota, C., Rocha, A., et al.: Defining and Building Domain-Oriented Soft-
ware Development Environments. In: ICSSEA 1999, 12th International Conference Soft-
ware & Systems Engineering and their Applications, Paris, France (1999)

13. McManus, J.: How does Software Quality Assurance Fit. In: Handbook of Software Qual-
ity Assurance, 3rd edn. Prentice Hall, Englewood Cliffs (1999)

14. Oliveira, S., Vasconcelos, A.: A Continuous Improvement Model in ImPProS. In: 30th
Annual International Computer Software and Applications Conference. Proceedings on
COMPSAC Fast Abstract Session, Chicago, EUA (2006)

15. Ricci, F., Arslan, B., Mirzadeh, N., Venturini, A.: Detailed Descriptions of CBR Method-
ologies. Information Society Technologies (2002),
http://dietorecs.itc.it/PubDeliverables/D4.1-V1.pdf

16. Wu, Z., Palmer, M.: Verb Semantics and Lexical Selection. In: 32nd Annual Meeting of the
Association for Computational Linguistic, New Mexico State University, Las Cruces, New
Mexico, USA, pp. 133–138 (1994)

17. Cunningham, P.: A Taxonomy of Similarity Mechanisms for Case-Based Reasoning.
Technical Report UCD-CSI-2008-01. University College Dublin. Belfield, Ireland (2008)

18. Brasil, M., Cortés, M.: Definição de Processo de Software através da Composição de
Atributos de Casos Similares. Hífen, Uruguaiana 32(62) , 91–98 (2008)

19. Beck, K.: Extreme Programming Explained: Embrace Change. Pearson, London (2004)
20. SEI, CMMI® or Agile: Why Not Embrace Both! (2008),

http://www.sei.cmu.edu/pub/documents/08.reports/
08tn003.pdf (Accessed in: 13/11/2008)

21. Pollice, G., Augustine, L., Lowe, C., Madhur, J.: Software development for small teams - a
RUP centric approach. Addison-Wesley, Reading (2004)

22. Rouiller, A.: Gerenciamento de Projetos de Software para Empresas de Pequeno Porte,
PhD. Thesis, Universidade Federal de Pernambuco (2001)

23. Orci, T., Laryd, A.: Dynamic CMM for small organizations. In: Proceedings of the First
Argentine Symposium on Software Engineering (ASSE), Argentina, pp. 133–149 (2000)

24. Kruchten, P., Kroll, P.: The Rational Unified Process Made Easy. Addison-Wesley, Read-
ing (2003)

25. Pressman, R.: Software Engineering, 5th edn. McGraw-Hill, New York (2002)

www.manaraa.com

Dynamic Management of the Organizational Knowledge Using Case-Based Reasoning 233

Appendix

Fig. A1. Taxonomies for QVI features

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 234–247, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Mapping Software Acquisition Practices from ISO 12207
and CMMI

Francisco J. Pino1,3, Maria Teresa Baldassarre2, Mario Piattini3,
Giuseppe Visaggio2, and Danilo Caivano2

1 IDIS Research Group, Electronic and Telecommunications Engineering Faculty
University of Cauca, Calle 5 # 4 – 70 Popayán, Colombia

fjpino@unicauca.edu.co
2 Department of Informatics, University of Bari – SER&Practices SPINOFF

University of Bari, Via E. Orabona 4, 70126, Bari, Italy
{baldassarre,visaggio,caivano}@di.uniba.it

3 Alarcos Research Group – Institute of Information Technologies & Systems
University of Castilla-La Mancha, Paseo de la Universidad, 4, 13071, Ciudad Real, Spain

Mario.Piattini@uclm.es

Abstract. The CMMI-ACQ and the ISO/IEC 12207:2008 are process reference
models that address issues related to the best practices for software product ac-
quisition. With the aim of offering information on how the practices described
in these two models are related, and considering that the mapping is one spe-
cific strategy for the harmonization of models, we have carried out a mapping
of these two reference models for acquisition. We have taken into account the
latest versions of the models. Furthermore, to carry out this mapping in a sys-
tematic way, we defined a process for this purpose. We consider that the map-
ping presented in this paper supports the understanding and leveraging of the
properties of these reference models, which is the first step towards harmoniza-
tion of improvement technologies. Furthermore, since a great number of or-
ganizations are currently acquiring products and services from suppliers and
developing fewer and fewer of these products in-house, this work intends to
support organizations which are interested in introducing or improving their
practices for acquisition of products and services using these models.

Keywords: Harmonization of improvement technologies, Mapping, Software
product acquisition, CMMI-ACQ, ISO/IEC 12207.

1 Introduction

Software process improvement is a planned, managed and controlled effort which aims
to enhance the capability of the software development processes of an organization [1].
It is significant to highlight that in a software process improvement effort different types
of models are involved. These include the process reference model, the process assess-
ment method and the model that guides the process improvement [2]. According to [3]
the purpose of the process reference models is to provide the description of the proc-
esses (and their entities) that can be applied during the acquisition, supply, development,

www.manaraa.com

 Mapping Software Acquisition Practices from ISO 12207 and CMMI 235

operation and maintenance of software. These models describe best practices which
should be taken into account by organizations in the acquisition, supply, development,
operation and maintenance of software.

Now more than ever, many organizations are increasingly becoming interested in
the activities of software acquisition [4]. Currently, a great number of organizations
are acquiring products and services from suppliers and developing fewer and fewer of
these products inhouse. These organizations may be customers who need to perform
good practices to guarantee that the product and service purchased satisfy the defined
acceptance criterias. These organizations can also be suppliers that may act as a
customer when acquiring a product and service from another supplier.

Regarding the process reference model related to software acquisition, the
Software Engineering Institute –SEI– has recently developed the CMMI-ACQ [5],
and the International Standardization Organization –ISO– is addressing this issue in
the agreement processes category of ISO 12207:2008 [6]. Each model has got its own
structure, processes and entities of process for describing best practices in its scope of
application.

Given the present need to harmonize different improvement technologies [7] to
support organizations which are interested in introducing or improving their practices
for acquisition of products and services, it is important to have information on how
the practices described in these two models are related. According to [8], the
harmonization aims to develop an appropriate solution to meet the individual
organizational objectives, which first requires understanding and leveraging of the
properties of the technologies of interest.

In this vein, and aiming to support the organizations in the integration,
management, and alignment of their activities of software acquisition using these
models, in this paper a mapping of CMMI-ACQ and ISO/IEC 12207:2008 is
presented. According to [7] mapping is one of the most widely-used specific
strategies for the harmonization of models. We have taken into account the following
considerations for this mapping: (i) refer to the latest versions of the models, (ii) carry
out the mapping with process entities of low level of abstraction, and (iii) guide the
mapping through a well defined method.

The paper is structured as follows. Section 2 presents related works, and then the
general considerations for mapping are described. Section 4 presents the mapping
overview and describes the analysis of results. Lastly, conclusions and future work
are set out.

2 Related Work

Literature presents some works that involve mapping and comparisons between dif-
ferent processes models. A mapping is a comparison which: (i) goes beyond the iden-
tification of differences and similarities between the improvement technologies, and
(ii) connects explicit entities of these technologies. Among these, those related to
CMMI V1.1 and ISO 9001 are:

• In [9] a mapping between two models is described.
• In [10] a new model that integrates the content of these two models is introduced.

www.manaraa.com

236 F.J. Pino et al.

• In [11] a way for the transition from ISO 9001 to SW-CMM is defined.
• In [12] a comparison and a correspondence between ISO 9001 and SW-CMM are

shown.

In the same sense, the following studies regarding the integration of specific
assessment frameworks have been conducted:

• An analysis and comparison of ISO/IEC 15504:2004 and CMMI V1.1 for software
process assessment is presented in [13].

• An analysis of compatibility between SPICE and CMM is given in [14].
• In [3] the harmonization of CMMI V1.1 and ISO/IEC TR 15504-2:2002 is

presented.
• In [15] and [16] a definition of compatibility structures and comparison between

CMMI and SPICE is described.

The works that deal with the standards ISO/IEC 15504-2:2004 involve ISO/IEC
12207:2002 directly, because this latter standard is suggested by ISO/IEC 15504 as a
process reference model.

As can be seen from the work presented above, the most widely-used models in
mapping and comparisons are: ISO 9001, ISO/IEC 15504:2004 and CMMI V1.1.
However, in none of these mappings and comparisons are the latest versions of these
models involved. Moreover, from the analysis of these studies we have found that the
process entities involved in the comparisons or mappings are of high level abstraction
(as examples, objectives, outcomes or statements).

We have carried out a mapping between the latest versions of models: ISO/IEC
12207:2008 [6] and CMMI-ACQ V1.2: 2007 [5]. For the development of our explicit
comparison we have followed a well defined process, which we also used for other
comparisons that we have carried out (ISO 9001 to CMMI-DEV, and ISO 12207 to
CMMI-DEV [17]). We might add that the entities involved in the mapping are: (i)
activities and tasks for ISO/IEC 12207 and (ii) specific practices for CMMI-ACQ.
These process entities are of low level abstraction in the description of the processes
or process areas.

A comparison at this abstraction level provides information about what activities
and tasks outlined in ISO/IEC 12207 give support to specific practices of CMMI-
ACQ. Furthermore, an analysis at this abstraction level can give directions about how
a model previously implemented in the organization (ISO 12207) can meet part of the
requirements to establish a new model (CMMI-ACQ). This could reduce the effort
and costs associated with the implementation of a new model, with reference to a
model already used in the organization. The cost reduction in the implementation of a
model is a benefit of the harmonization [8].

3 Performing the Mapping

After an analysis of the different related pieces of work mentioned in the previous
section, we have observed a constant relationship between some models of the SEI
and ISO. Table 1 shows a high-level relationship extracted from the structures of these
models and their comparisons.

www.manaraa.com

 Mapping Software Acquisition Practices from ISO 12207 and CMMI 237

Table 1. High-level relationship between some ISO and SEI standards

 SEI
 CMMI-ACQ
 Generic Goals / Generic

Practices
Process Areas

15504-5
12207

Process Performance of the process
ISO

15504-2 Process
Attribute

Institutionalization of the
capability of the process

As arises from the table, the process areas of CMMI-ACQ models are closely
related to the process reference models described in ISO/IEC 15504-5 [18] and
ISO/IEC 12207 [6, 19]. Furthermore, generic goals and practices of CMMI-ACQ
models are closely related to the process attributes described in the ISO/IEC 15504-2
standard [20].

Based on the relationship offered in Table 1, the mapping between CMMI-ACQ
and ISO 12207:2008 must be carried out at the level of process performance; in other
words, this comparison doesn’t involve goals and generic practices.

There follows a description of activities carried out to perform the mapping be-
tween these two models. These activities are related to the process that we have de-
fined for the comparison and mapping of models. The purpose of this process is to
provide a guide with which to perform the comparison and mapping of different mod-
els step-by-step. This process defines two roles: the performers and the reviewers of
the mapping, along with five tasks: (i) analyzing the models, (ii) designing the map-
ping, (iii) carrying out the mapping, (iv) presenting the outcomes of the mapping, and
(v) analyzing the results of the mapping.

This comparison and mapping process is part of a framework, which we are cur-
rently developing, to harmonize improvement technologies. This framework seeks to
determine and define an appropriate strategy for connecting two or more improve-
ment technologies to support the achievement of business goals of an organization. A
harmonization strategy is a set of methods or techniques defined systematically to
implement the connection of diverse improvement technologies. These methods or
techniques can be: mapping, comparison, correspondence, synergy, complementation
and integration, among others.

3.1 Analyzing the Models

This task involves: (i) acquiring knowledge about the models to compare and (ii)
analyze the structure of these models. In this sense, a description of CMMI-ACQ and
ISO/IEC 12207 is described in the following lines.

According to [5], the purpose of CMMI-ACQ is to provide guidance for the appli-
cation of CMMI best practices by the acquirer. Best practices in the model focus on
activities for initiating and managing the acquisition of products and services that
meet the needs of the customer. Although suppliers may provide artefacts which are
useful to the processes addressed in CMMI-ACQ, the focus of the model is on the
processes of the acquirer. CMMI-ACQ integrates bodies of knowledge that are
essential for an acquirer. It is a collection of best practices that is generated from the
CMMI Framework, which is the basic structure that organizes CMMI components

www.manaraa.com

238 F.J. Pino et al.

and combines them into CMMI constellations and models. Also in the framework is a
CMMI model foundation (CMF) which exists within the CMMI Framework, and it is
a skeleton model that contains each of the components that must be included in every
CMMI model [21].

As regards the CMMI-ACQ’s structure, it contains two main sections in its de-
scription: (i) generic goals and practices, and (ii) process areas. Each process area is
defined in terms of the process entities: purpose, specific goals (required component),
specific practices (expected component). A required component describes what an
organization must achieve to satisfy a process area, and an expected component de-
scribes what an organization may implement to achieve a required component.

On the other hand, according to [6] the purpose of ISO/IEC 12207 standard (Sys-
tems and software engineering - Software life cycle processes) is to provide a defined
set of processes to facilitate communication among acquirers, suppliers and other
stakeholders in the life cycle of a software product.

With respect to the ISO/IEC 12207’s structure, the processes are grouped in proc-
ess groups, and each process is described in terms of the process entities: purpose,
outcomes, activities and tasks. The purpose and outcomes are a statement of the goals
of the performance of each process. The list of activities and tasks is performed to
achieve the outcomes.

3.2 Designing and Carrying Out the Mapping

This task involves: (i) fixing the process entities to be compared, based on the re-
search needs, (ii) defining the comparison scale, (iii) fixing the directionality of the
comparison, and (iv) defining a template comparison.

This comparison should find activities which ISO/IEC 12207 and CMMI-ACQ
have in common, in order to define goals for a measurement plan using the Multiview
Framework [22]. To apply the Multiview Framework, the mapping should be done at
the level of: (i) the entities of specific practices for CMMI-ACQ, and (ii) the entities
of activity and tasks for ISO/IEC 12207. The Fig. 1 shows these entities involved in
the mapping. These entities describe specific practice or activities that should be exe-
cuted to obtain the intended product or service. Carrying out the mapping using these
entities allows us to identify common activities found (from now on called specific
activities) in both CMMI-ACQ and ISO/IEC 12207. The above-mentioned specific
activities can not be found using entities such as purpose, outcomes or generic goals.

To express the degree of relationship between a Process from ISO/IEC 12207 and
a Process area from CMMI-ACQ, we have defined a discrete scale (scale of compari-
son). Each of the elements of the scale has been associated with a set of numeric val-
ues which are described in terms of percentage. This scale is made up of the following
elements:

• Strongly related (86% to 100%),
• Largely related (51% to 85%),
• Partially related (16% to 50%),
• Weakly related (1% to 15%), and
• Non-related (0%).

www.manaraa.com

 Mapping Software Acquisition Practices from ISO 12207 and CMMI 239

CMMI-ACQCMMI-ACQ Process Areas
(Specific practices)

<describes> *

Processes
(Activities and Tasks)

ISO 12207:2008

MappingMapping

<<input>>

<<input>>

Mapping between
CMMI-ACQ and ISO 12207:2008

Mapping between
CMMI-ACQ and ISO 12207:2008

<<output>>

<describes> *

Fig. 1. Structure and elements involved in the mapping

The numeric values can be found by dividing the number of specific practices
(from a Process area of CMMI-ACQ) that are related to activities (from a process of
ISO/IEC 15504) by the total number of specific practices defined in that Process area.

When a comparison involves process entities of low level abstraction it is relevant
to define the direction of the comparison (see a discusion of this issue in section 4.3).
The direction of this mapping is from ISO/IEC 12207 to CMMI-ACQ.

The roles were assigned, with two people as performers of the mapping and two
reviewers. We then carried out the mapping by means of an iterative and incremental
procedure. It is iterative, because the execution (analyze and determine the relation-
ship of the process entities of ISO/IEC 12207 and CMMI-ACQ) of the mapping is
carried out completely on one CMMI-ACQ process area first, and then on the others
in turn. It is also incremental, in the sense that the template comparison (which is the
product) grows and evolves with each iteration until it becomes the definitive one.

4 Presenting and Analyzing the Results of the Mapping

Based on the general considerations of the comparison described in the previous sec-
tion, the degree of relationship of the CMMI-ACQ process areas from the ISO 12007
process is presented in Table 2.

Each intersection of Table 2 is the overview of a detailed comparison between spe-
cific practices of a process area of CMMI-ACQ and activities of a process of ISO
12207.

Table 3 shows a specific comparison between specific practices of Process and
Product Quality Assurance (PPQA) of CMMI-ACQ and the activities of Project As-
sessment and Control Process, Software Quality Assurance Process and Software
Review Process of ISO/IEC 12207.

We shall now go on to present a discussion and consideration of several issues
which arose during this work, such as: an analysis of the specific issues of acquisition
in both models and the lessons learned.

www.manaraa.com

240 F.J. Pino et al.

Table 2. Overview of the mapping between ISO/IEC 12207 and CMMI-ACQ

C
au

sa
l A

na
ly

si
s

an
d

R
es

ol
ut

io
n

(C
A

R
)

C
on

fig
ur

at
io

n
 M

a
n

ag
em

e
nt

 (C
M

)
D

ec
is

io
n

A
na

ly
si

s
an

d
R

es
ol

ut
io

n
(D

A
R

)
In

te
g

ra
te

d
P

ro
je

ct
 M

a
na

g
em

e
nt

 (I
P

M
)

M
ea

su
re

m
e

nt
 a

nd
 A

na
ly

si
s

(M
A

)
O

rg
an

iz
at

io
n

a
l I

nn
o

va
tio

n
 a

n
d

D
ep

lo
ym

en
t (

O
ID

)
O

rg
an

iz
at

io
na

l P
ro

ce
ss

 D
ef

in
iti

on
 (

O
P

D
)

O
rg

an
iz

at
io

na
l P

ro
ce

ss
 F

oc
us

 (
O

P
F

)
O

rg
an

iz
at

io
n

a
l P

ro
ce

ss
 P

er
fo

rm
a

n
ce

 (O
P

P
)

O
rg

an
iz

at
io

na
l T

ra
in

in
g

(O
T)

P
ro

je
ct

 M
o

ni
to

rin
g

an
d

 C
on

tro
l (

P
M

C
)

P
ro

je
ct

 P
la

nn
in

g
(P

P
)

P
ro

ce
ss

 a
nd

 P
ro

du
ct

 Q
u

a
lit

y
A

ss
ur

an
ce

 (
P

P
Q

A
)

Q
ua

nt
ita

tiv
e

P
ro

je
ct

 M
an

ag
em

en
t (

Q
P

M
)

R
eq

ui
re

m
e

nt
s

M
an

a
ge

m
e

n
t (

R
E

Q
M

)
R

is
k

M
a

na
g

em
en

t (
R

S
K

M
)

A
gr

ee
m

e
nt

 M
a

n
a

ge
m

e
n

t (
A

M
)

A
cq

ui
si

tio
n

 R
eq

u
ire

m
en

ts
 D

ev
el

op
m

e
nt

 (
A

R
D

)
A

cq
ui

si
tio

n
 T

e
ch

ni
ca

l M
an

ag
e

m
en

t
(A

T
M

)
A

cq
ui

si
tio

n
V

al
id

at
io

n
(A

V
A

L)
A

cq
ui

si
tio

n
 V

er
ifi

ca
tio

n
 (

A
V

E
R

)
S

ol
ic

ita
tio

n
an

d
S

up
pl

ie
r

A
gr

ee
m

en
t D

ev
el

op
m

en
t (

S
S

A
D

)

Acquisition process S L P L
Supply process
Life Cycle Model Management Process L W W P P
Infrastructure Management Process P W
Project Portfolio Management Process W P
Human Resource Management Process W P S W
Quality Management Process P
Project Planning Process W L P
Project Assessment and Control Process L W L P W
Decision Management Process P
Risk Management Process W W S
Configuration Management Process S
Information Management Process W
Measurement Process S P
Stakeholder Requirements Definition Process P P W
System Requirements Analysis Process L P
System Architectural Design Process P
Implementation Process
System Integration Process
System Qualification Testing Process
Software Installation Process
Software Acceptance Support Process
Software Operation Process
Software Maintenance Process
Software Disposal Process
Software Implementation Process P
Software Requirements Analysis Process L
Software Architectural Design Process
Software Detailed Design Process
Software Construction Process
Software Integration Process
Software Qualification Testing Process
Software Documentation Management Process
Software Configuration Management Process S
Software Quality Assurance Process S
Software Verification Process P
Software Validation Process L
Software Review Process W P S P P
Software Audit Process P P
Software Problem Resolution Process L
Domain Engineering Process
Reuse Asset Management Process P
Reuse Program Management Process

Direction of the comparison: From ISO/IEC 12207 to CMMI-ACQ
Process entities for the comparison:
• For ISO/IEC 12207: Activities and tasks of the standard's processes.
• For CMMI-ACQ: Specific practices.
Research question:
• What activities and tasks of ISO/IEC 12207 can offer support to specific
practices of CMMI?
• What ISO/IEC 12207's activities and tasks are strongly related with the
support to CMMI's specific practices?
Comparison goal: To determine which activities and tasks of ISO/IEC
12207 have a close relationship with some specific practice of CMMI. The
goal is to find out to what degree the specific practices of CMMI based on
the activities and tasks described in ISO/IEC 12207 are fulfilled.
Scale of comparison:
• S - Strongly related (86% to 100%)
• L - Largely related (51% to 85%)
• P - Partially related (16% to 50%)
• W - Weakly related (1% to 15%)
• - Non-related (0%)

CMMI-ACQ

Agreement processes
(2 processes)

CMMI-ACQ
(6 New Process

areas)

CMMI Framework
(16 Process areas)

IS
O

/IE
C

 1
22

07

S
ys

te
m

 c
o

n
te

xt
 p

ro
ce

ss
S

of
tw

ar
e

sp
ec

if
ic

 p
ro

ce
ss

Software reuse
processes

(3 processes)

Project processes
(7 processes)

Technical processes
(11 processes)

Software Support
Processes

(8 processes)

Organizational Project-
Enabling Processes

(5 processes)

Software
Implementation

Processes
(7 processes)

www.manaraa.com

 Mapping Software Acquisition Practices from ISO 12207 and CMMI 241

Table 3. Specific comparison between specific practices and activities

Process Area PROCESS AND PRODUCT QUALITY ASSURANCE (PPQA)

Specific practices

S
P

 1
.1

O

bj
ec

tiv
el

y
E

va
lu

at
e

P
ro

ce
ss

es

S
P

 1
.2

O

bj
ec

tiv
el

y
E

va
lu

at
e

W
or

k
P

ro
du

ct
s

an
d

S
er

vi
ce

s

S
P

 2
.1

C

om
m

un
ic

at
e

an
d

E
ns

ur
e

th
e

R
es

ol
ut

io
n

of

N
on

co
m

pl
ia

nc
e

Is
su

es

S
P

 2
.2

E

st
ab

lis
h

R
ec

or
ds

Degree of relationship
6.3.2 Project Assessment and Control Process

6.3.2.3.1 Project monitoring.
6.3.2.3.2 Project control.
6.3.2.3.3 Project assessment.
6.3.2.3.4 Project closure.

7.2.3 Software Quality Assurance Process
7.2.3.3.1 Process implementation.
7.2.3.3.2 Product assurance.
7.2.3.3.3 Process assurance.
7.2.3.3.4 Assurance of quality systems.

7.2.6 Software Review Process
7.2.6.3.1 Process implementation.
7.2.6.3.2 Project Management Reviews.
7.2.6.3.3 Technical Reviews.

S (4 SP of 4)

S (4 SP of 4)

S (Fuerte)

A
ct

iv
iti

es
A

ct
iv

iti
es

A
ct

iv
iti

es

P (1 SP of 4)

4.1 The Acquisition in Both Models

The purpose of CMMI-ACQ is to provide guidance for the application of CMMI best
practices by the acquirer [5]. This model shows a viewpoint from the side of the ac-
quirer, so the focus of the model is on the processes of the acquirer. Supplier activities
are not addressed in this model. It was very important to keep this perspective con-
stantly in mind.

CMMI-ACQ contains 22 process areas. Of those, 16 are CMMI Model Foundation
(CMF) process areas. Six process areas focus on practices which are specific to acqui-
sition of both products and services, addressing:

• Agreement management (AM)
• Acquisition requirements development (ARD)
• Acquisition technical management (ATM)
• Acquisition validation (AVAL)
• Acquisition verification (AVER), and
• Solicitation and supplier agreement development (SSAD).

An analysis about the Agreement process group (labelled number 6.1 in the standard)
has been carried out. This process group defines the activities necessary to
establish an agreement between two organizations, and it defines two processes: Ac-
quisition and Supply. The purpose of the Acquisition Process is to obtain the product
and/or service that satisfies/satisfy the need expressed by the acquirer. The purpose of
the Supply Process is to provide a product or service to the acquirer that meets the
agreed requirements [6].

www.manaraa.com

242 F.J. Pino et al.

6.1.1 Acquisition
Process

7.2.4 Software
Verification Process

7.2.5 Software
Validation Process

6.4.2 System
Requirements Analysis

Process

7.2.7 Software Audit
Process

7.2.6 Software
Review Process

6.4.1 Stakeholders
Requirement Definition

Process

7.2.2 Software
Configuration

Management Process

7.2.8 Software
Problem Resolution

Process Process of support

Process directly connected

6.1.1 Acquisition
Process

7.2.4 Software
Verification Process

7.2.5 Software
Validation Process

6.4.2 System
Requirements Analysis

Process

7.2.7 Software Audit
Process

7.2.6 Software
Review Process

6.4.1 Stakeholders
Requirement Definition

Process

7.2.2 Software
Configuration

Management Process

7.2.8 Software
Problem Resolution

Process Process of support

Process directly connected

Fig. 2. Relationships among processes of ISO/IEC 12207 for Acquisition

On analyzing the description of the Supply Process, a viewpoint from the supplier
is observed. This perspective is opposite to that described by the CMMI-ACQ. Taking
into account this consideration, it is observed that the Process Supply is not related to
the six process areas which focus on practices specific to acquisition as described by
CMMI-ACQ.

Based on the comparison carried out and the description of the Acquisition process
from the ISO/IEC 12207 standard, a relationship between these processes is shown in
Fig. 2. The goal is to offer an overview to the acquirer, of which processes are in-
volved in the acquisition.

4.2 Detailed View for Acquisition

Table 4 shows a summary of the comparison carried out between the six specific
process areas of CMMI-AQC for the acquisition and the processes related to the
Agreement processes of ISO 12207. The degree of relationship presented between
process areas and process is only described in the direction from ISO 12207 to
CMMI. In other words, how the activities of processes of ISO 12207 support the
fulfilment of the specific practices of CMMI-ACQ. In Table 5 an example of a de-
tailed comparison between activities and tasks of a process from ISO/IEC 12207 and
the Agreement Management process area from CMMI-ACQ is shown.

For each process of ISO/IEC 12207 and process areas of CMMI-ACQ that have
some relationship, we have defined a detailed chart like Table 5.

In summary, there are 39 specific practices in 6 process areas (Agreement man-
agement - AM, Acquisition requirements development - ARD, Acquisition technical
management - ATM, Acquisition validation - AVAL, Acquisition verification -
AVER and Solicitation and supplier agreement development - SSAD) of CMMI-
ACQ, of which 28 specific practices are related to one or more tasks or activities of
ISO 12207. So the degree of general relationship is 72% (28/39).

www.manaraa.com

 Mapping Software Acquisition Practices from ISO 12207 and CMMI 243

Table 4. Detailed view of the relationship for acquisition of ISO/IEC 12207 and CMMI-ACQ

 CMMI-ACQ
 AM ARD ATM SSAD AVAL AVER

Acquisition process S 100% L 63% P 20% L 56%
Software Review Process P 20% P 38%
Software Audit Process P 25% P 20%
Stakeholder Req. Definition Process P 50% W 11%
System Req. Analysis Process P 25%
Validation Process L 80%

ISO 12207

Verification Process P 50%
Degree of relationship GENERAL S 100% L 75% P 20% L 66% L 80% S 88%

Table 5. Detailed comparison between activities and tasks of Acquisition process of ISO 12207
and specific practices of Agreement management of CMMI-ACQ

 AGREEMENT MANAGEMENT - AM (Specific practices)
 SP 1.1 Execute

the Supplier
Agreement.

SP 1.2 Monitor
Selected Sup-
plier Process

SP 1.3 Accept
the Acquired
Product

SP 1.4 Manage
Supplier In-
voices

6.1.1.3.1 Acquisition
preparation.

6.1.1.3.2 Acquisition
advertisement.

6.1.1.3.3 Supplier
selection.

6.1.1.3.4 Contract
agreement.

6.1.1.3.5 Agreement
monitoring.

Task 6.1.1.3.5.1 Task 6.1.1.3.5.1

6.1.1.3.6 Acquirer
acceptance.

 Task 6.1.1.3.6.2

6.1.1.3.7 Closure. Task 6.1.1.3.7.1

6.
1.

1
A

cq
ui

si
ti

on
 p

ro
ce

ss
 (

A
ct

iv
it

ie
s)

Degree of relationship (Direction ISO 12207 to CMMI)
100% (Fulfilment 4 of 4 Specific Practices)

The specific practices that are not supported by the activities from ISO 12207 are:

• Acquisition requirements development - ARD, SP 2.2 Allocate Contractual
Requirements.

• Acquisition requirements development - ARD, SP 3.3 Analyze Requirements to
Achieve Balance

• Acquisition technical management - ATM, SP 1.1 Select Technical Solutions for
Analysis

• Acquisition technical management - ATM, SP 1.2 Analyze Selected Technical
Solutions

• Acquisition technical management - ATM, SP 2.1 Select Interfaces to Manage
• Acquisition technical management - ATM, SP 2.2 Manage Selected Interfaces
• Solicitation and supplier agreement development - SSAD, SP 1.1 Identify Potential

Suppliers
• Solicitation and supplier agreement development - SSAD, SP 2.2 Establish Nego-

tiation Plans

www.manaraa.com

244 F.J. Pino et al.

• Solicitation and supplier agreement development - SSAD, SP 3.1 Establish an
Understanding of the Agreement

• Acquisition validation - AVAL, SP 1.2 Establish the Validation Environment
• Acquisition verification - AVER, SP 1.2 Establish the Verification Environment

4.3 Lessons Learned

In a comparison at low level abstraction, the degree of relationship between a Process
from ISO/IEC 12207 and a Process area from CMMI-ACQ, depends on the direction
of the relationship. In other words, this relationship is not bi-directional. For instance,
Table 5 shows the next degree of relationship:

• Direction from ISO 12207 to CMMI: The degree of relationship is 100% (S) (Ful-
filment 4 of 4 Specific Practices). As shown in the chart: 3 activities of this process
of ISO 12207 meet 4 specific practices of the 4 that this process area of CMMI-
ACQ has defined.

• Direction from CMMI to ISO 12007: The degree of relationship is 43% (P) (Ful-
filment of 3 out of 7 Activities). As shown in chart 4, specific practices of this
process area meet 3 activities of the 7 that this process of ISO 12207 has defined.

With the early detailed comparisons between a process and a process area, an analysis
of the degrees of relationship in the comparison was conducted. According to this
analysis, we conclude that this degree is not always possible to establish in both direc-
tions. In some cases, in a given direction it loses meaning. An example is shown in
Table 6. In this table it does not make sense to establish a degree of relationship in the
direction from CMMI to ISO 12007, because it is not correct to say that the Software
Audit Process has 100% of fulfilment if only the specific practices SP 1.3 of ATM
process area have been carried out. In these cases this row is labelled as Not Applicable.

Regarding the processes of ISO 12207 and their relationship with the sixteen proc-
ess areas of the CMMI-ACQ (which are part of the CMMI Framework), we can
observe that there is:

• Strong support level to the process areas: Configuration Management, Measure-
ment and Analysis, Project Monitoring and Control, Process and Product Quality
Assurance, Requirements Management, Organizational Training, Risk Manage-
ment, and Causal Analysis and Resolution.

• Large support level to the process area of Project Planning.
• Partial support level to the process areas: Decision Analysis and Resolution, Inte-

grated Project Management, Organizational Process Definition, Organizational
Process Focus and Quantitative Project Management.

• Weak support level to the process areas: Organizational Innovation and Deploy-
ment, and Organizational Process Performance.

As regards the value of the degree of relationship is important to highlight that a
strong degree of relationship does not mean that a process area of CMMI-ACQ is
satisfied. It only indicates that most of the specific practices of this process area are
connected to the processes of ISO 12207. To determine the degree of implementation
of a specific practice from the processes of ISO 12207 it is necessary to conduct a
detailed analysis of the relationships presented in this mapping.

www.manaraa.com

 Mapping Software Acquisition Practices from ISO 12207 and CMMI 245

Table 6. Degree of relationship “Not Applicable” between activities from ISO 12207 and
specific practices from CMMI-ACQ

 ATM
(Specific practices)

SP
 1

.1
 S

el
ec

t T
ec

hn
ic

al
 S

ol
ut

io
ns

 f
or

 A
na

ly
si

s

SP
 1

.2
 A

na
ly

ze
 S

el
ec

te
d

T
ec

hn
ic

al
 S

ol
ut

io
ns

SP
 1

.3
 C

on
du

ct
 T

ec
hn

ic
al

 R
ev

ie
w

s

SP
 2

.1
 S

el
ec

t I
nt

er
fa

ce
s

to
 M

an
ag

e

SP
 2

.2
 M

an
ag

e
Se

le
ct

ed
 I

nt
er

fa
ce

s

7.2.7.3.1 Process implementation.

7.2.7.3.2 Software audit.

D
eg

re
e

of
 r

el
at

io
ns

hi
p

(D
ir

ec
tio

n
C

M
M

I
to

 I
SO

 1
22

07
)

N
ot

 A
pp

lic
ab

le

7.2.7
Software

Audit
Process

(Activities)
Degree of relationship (Direction ISO 12207-CMMI)

20% (Fulfilment 1 of 5 Specific Practices)

On the topic of the comparison process, to follow an iterative and incremental pro-
cedure to perform the mapping brought some advantages, for example:

• The performing of the mapping starts with a process area, to reduce the complexity
and scope of each iteration.

• Each iteration of mapping is short and provides feedback for the next iteration.
• There is an integration of the results of each iteration into the mapping final report.
• With the design of the mapping the iterations can be carried out both independently

and in parallel.
• The complexity of each iteration is easier to manage.

5 Conclusions

In this work we have presented a mapping between two reference models: CMMI-
ACQ and ISO/IEC 12207:2008. To carry out this comparison in a systematic way, we
defined a process for that purpose. Following this process has helped us to organize
and manage the work performed for comparison, with the aim of reducing the two
types of error in the comparisons described by Yoo in [10]. To increase the reliability
of results, this process proposes using pair review by the performers of the mapping in
the task which carries out the comparison. Furthermore, the reviewer of the mapping
validates the result and this resolves the divergences between the performers.

www.manaraa.com

246 F.J. Pino et al.

Taking into account the activities and tasks described by the processes of ISO/IEC
12207 for Acquisition and their relationship with six process areas focused on prac-
tices which are specific to acquisition of CMMI-ACQ, we can observe that there is a
suitable support level for these process areas: Agreement Management, Acquisition
Verification, Acquisition Validation, Acquisition Requirements Development and
even to the process area of Solicitation and Supplier Agreement Development. How-
ever, the support level to the Acquisition Technical Management is low.

We will use specific activities for the definition of goals for a measurement plan in
a software enterprise, following the Multiview Framework. On the other hand, we are
currently working on the definition of a methodology which would offer companies a
strategy for harmonization of process entities described by different reference models.
The mapping process described in this paper is a component of that methodology of
harmonization.

Acknowledgements. This work has been funded by the projects: INGENIO (PAC08-
0154-9262, JCCM of Spain), ARMONIAS (PII2109-0223-7948 of JCCM of Spain)
and PEGASO/MAGO (TIN2009-13718-C02-01 of Ministerio de Ciencia e Innova-
cion – MICINN, and Fondo Europeo de Desarrollo Regional - FEDER). By the first
author to the research fellowships granted by JCCM and funded by Fondo Europeo de
Desarrollo Regional- FEDER.

References

1. Krasner, H.: Accumulating the Body of Evidence for the Payoff of Software Process Im-
provement. In: Hunter, R.B., Thayer, R.H. (eds.) Software Process Improvement, pp. 519–
540. Wiley-IEEE Computer Society (2001)

2. Pino, F., Garcia, F., Piattini, M.: Software Process Improvement in Small and Medium
Software Enterprises: A Systematic Review. Software Quality Journal 16(2), 237–261
(2008)

3. Rout, T., Tuffley, A.: Harmonizing ISO/IEC 15504 and CMMI. Software Process: Im-
provement and Practice 12(4), 361–371 (2007)

4. Weber, C., De Araújo, E.E.R., Scalet, D., De Andrade, E.L.P., Da Rocha, A.R.C., Mon-
toni, M.A.: MPS model-based software acquisition process improvement in Brazil. In:
QUATIC 2007 - 6th International Conference on the Quality of Information and Commu-
nications Technology, Lisboa, Portugal, pp. 110–119 (2007)

5. SEI, CMMI for Acquisition, Version 1.2. Technical Report CMU/SEI-2007-TR-017,
Software Engineering Institute (SEI): Pittsburgh (2007)

6. ISO, ISO/IEC 12207: Systems and software engineering - Software life cycle processes.
International Organization for Standardization: Geneva (2008)

7. SEI. Process Improvement in Multimodel Environments (PrIME Project). 2008 [cited 2008
May], http://www.sei.cmu.edu/prime/primedesc.html

8. Siviy, J., Kirwan, P.: Process Improvement in Multimodel Environments. In: Past, Present,
Future, p. 45. Software Ingineering Institute, Carnegie Mellon (2008)

9. Mutafelija, B., Stromber, H.: ISO 9001:2000 - CMMI V1.1 Mappings. Software Engineer-
ing Institute - SEI, 1–31 (2003)

www.manaraa.com

 Mapping Software Acquisition Practices from ISO 12207 and CMMI 247

10. Yoo, C., Yoon, J., Lee, B., Lee, C., Lee, J., Hyun, S., Wu, C.: unified model for the im-
plementation of both ISO 9001:2000 and CMMI by ISO-certified organizations. Journal of
Systems and Software 79(7), 954–961 (2006)

11. Jalote, P.: CMM in Practice: Processes for Executing Software Projects, in Infosys. Addi-
son-Wesley, Reading (1999)

12. Paulk, M.C.: A Comparison of ISO 9001 and the capability maturity model for software
(CMU/SEI-94-TR-12), Software Engineering Institute (1994)

13. Wangenheim, C.G.v., Thiry, M.: Analysing the Integration of ISO/IEC 15504 and CMMI-
SE/SW Technical Report LPQS001.05E, Universidade do Vale do Itajaí - UNIVALI: Sao
José/SC, Brazil. p. 28 (2005)

14. Rout, T.: SPICE and the CMM: is the CMM compatible with ISO/IEC 15504? In: AquIS,
Venecia, Italy, p. 12 (1998)

15. Lepasaar, M., Mäkinen, T., Varkoi, T.: Structural comparison of SPICE and continuos
CMMI. In: SPICE 2002, Venicia, Italia, pp. 223–234 (2002)

16. Foegen, M., Richter, J.: CMM, CMMI and ISO 15504 (SPICE). IT Maturity Services, 52
(2003)

17. Pino, F., Baldassarre, M.T., Piattini, M., Visaggio, G.: Relationship between maturity lev-
els of ISO/IEC 15504-7 and CMMI-DEV v1.2. In: Software Process Improvement and
Capability Determination Conference (SPICE 2009), Turku, Finland, pp. 69–76 (2009)

18. ISO, ISO/IEC 15504-5:2006(E). Information technology - Process assessment - Part 5: An
exemplar Process Assessment Model. International Organization for Standardization, Ge-
neva (2006)

19. ISO, ISO/IEC 12207:2002. Information technology - Software life cycle processes. Inter-
national Organization for Standardization, Geneva (2002)

20. ISO, ISO/IEC 15504-2:2003/Cor.1:2004(E). Information technology - Process assessment
- Part 2: Performing an assessment. International Organization for Standardization, Geneva
(2004)

21. SEI, Introduction to the Architecture of the CMMI® Framework. TECHNICAL NOTE
CMU/SEI-2007-TN-009. Software Engineering Institute (SEI), Pittsburgh (2007)

22. Ardimento, P., Baldassarre, M.T., Caivano, D., Visaggio, G.: Multiview framework for
goal oriented measurement plan design. In: Bomarius, F., Iida, H. (eds.) PROFES 2004.
LNCS, vol. 3009, pp. 159–173. Springer, Heidelberg (2004)

www.manaraa.com

Concept Management: Identification and Storage of
Concepts in the Focus of Formal Z Specifications

Daniela Pohl and Andreas Bollin

Alpen-Adria Universität Klagenfurt, 9020 Klagenfurt, Austria
{daniela,andi}@isys.uni-klu.ac.at

http://www.uni-klu.ac.at/tewi/inf/isys/sesc/index.html

Abstract. Concept location is a necessary but all too often laborious task during
maintenance phases. Part of the reasons is that repeatedly the same or similar con-
cepts have to be reconstructed, which is a resource and time-consuming process.
This contribution investigates the situation and suggests a framework that per-
sistently stores conceptual elements and their dependencies in an SQL database.
On the example of formal Z specifications it demonstrates that concept location
is alleviated by simple queries that automatically identify concepts based on the
database entries.

Keywords: Concept location, Formal Z specifications, Maintenance.

1 Introduction

”People like to write code, but they do not like to read somebody else’s code.” This
statement becomes increasingly apparent as the number of software systems in use is
growing – and have to be maintained. Why might this be the case?

In [1, p.242] it is postulated that it is easier to express ones owns concepts and ideas
into the tight formality of a (programming) language than to reconstruct the concepts
the original developer had in mind from the formal expressions formulated in low level
code. This observation is above all true when the text or code expresses a concept pre-
viously unknown to the reader – which is often the case in maintenance situations. In
the lucky case there are at least high-level specification documents around, but, without
supporting tools, the identification of the relevant information stays a hard business.

Maintenance activities are often formulated in terms of adding/changing/deleting
features or concepts [2], and concept location techniques play an important role, in soft-
ware as well as in specification maintenance. Formal specification frameworks provide
excellent support for editing and verification, but they do not provide concept location
facilities. A (semi-) automatic identification of concepts is missing and, for formal spec-
ifications, also the possibility to store the, often cumbersome, reconstructed concepts to
be found in the documents.

The objective of this contribution is to demonstrate that not so much has to be done
in order to identify and store concepts. We introduce a generic model that is able to
deal with documents and concepts of different types. As a proof of concept a prototype
for formal Z specifications [3] has been implemented. But the basic ideas also apply to
other artifacts ... from natural language descriptions to program code.

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 248–261, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.manaraa.com

Identification and Storage of Concepts in the Focus of Formal Z Specifications 249

The paper is structured as follows. Sec. 2 discusses the related work. Sec. 3 derives
the requirements for a framework that is able to persistently store identified concepts.
With the necessary basics in concept location of Sec. 4 in mind, Sec. 5 introduces the
key ideas behind our suggested framework. Sec. 6 evaluates its functionality in respect
to correctness and time complexity. The contribution closes with a short summary and
an outlook of work to be done.

2 Related Work

Due to the size of today’s systems, maintenance and reverse engineering activities are
usually supported by tools and frameworks.

At first, there are SW-Engineering frameworks that can also be used for reverse en-
gineering activities [4,5,6,7,8]. Usually, they enable the reconstruction or extractions
of diagrams from code, and thus establish links between different representations sup-
porting round-trip engineering. Their disadvantage is that they are limited to a very
specific notation (e.g. UML) or assume that the code has already been written within
the framework.

Another group is that of explicit reverse engineering tools. There, the input is the
code or an abstract representation of it, and they sustain the process of creating ex-
tractions or views onto the source. Popular representatives are RIGI [9], going back to
the work of Müller, Tilley, and Wong in the early 90s, or Bauhaus [10]. In the mean-
time there are a lot of extensions and, especially for C++ and Java programs, similar
frameworks [11,12,13,14,15,16].

Finally, there are frameworks that focus explicitly on concept location [17,18,19].
They make use of techniques similar to those of reverse engineering environments, but
provide additional support for storing and retrieving previously identified concepts.

Environments for formal specifications have their focus on writing down a syntac-
tically correct specification and providing verification support. They are not meant to
be used for reverse engineering. However, one tool-set that permits looking at a spec-
ification from different angles is VDMTools with its RoseLink feature [20]. It can be
used to generate UML diagrams from VDM specifications. Tools for B also focus on
the creation of the specification. Some representatives, e.g. Atelier-B [21], at least pro-
vide views onto dependencies between the components. In the case of Z the situation
is almost the same. One exception is the ViZ toolkit [22], where the emphasis was laid
on concept location. But ViZ also has its limitations, first and foremost the inability to
persistently store identified concepts.

3 Maintenance Support

The motivation for this work goes back to a project where we tried to improve main-
tenance and re-engineering activities of formal Z specifications. A big advantage of
formal specifications is their semantic density. One can express his or her thoughts pre-
cisely and on a high level of abstraction. But with that, the complexity (and density)
of even small specifications is quite high. As shown in [23], specifications might have
thousands of dependencies between their elements, and comprehension aids are defi-
nitely necessary.

www.manaraa.com

250 D. Pohl and A. Bollin

3.1 RE of Formal Z Specifications

At first sight approaches from the traditional field of software comprehension are not
suitable. Z (among others) is a state-based, declarative specification language, with no
explicit control and data flow – dependencies that are typically utilized when looking
for concepts. But there is a solution to this problem.

In [24, p.60–63] a syntactical approximation to the identification of dependencies
was described, which then enabled the identification of concepts like slices, chunks,
and clusters within formal specifications. ViZ (for Vizualization of Z Specifications)
implements these algorithms and supports typical comprehension activities. But with
its employment the following issues have been observed:

– The same comprehension steps are often carried out more than once - even if there
is additional documentation. So dependencies and concepts identified once have to
be reconstructed again.

– The calculation and identification of concepts is still a time consuming task. More-
over, these calculations and findings are lost when the framework is closed and the
state is not saved for later use.

– It is not sufficient to look at a concept in isolation. Depending on the problem at
hand more than just a single view onto the artifact has to be generated.

To summarize, a framework sustaining comprehension tasks should not ignore the
above observations. It should support the identification of new concepts at different
levels, enable the linkage between them, and be able to store the findings persistently in
a database. Please note that the observations above are not only limited to the field of Z
specifications. They apply to other artifacts, too. Due to the resource-consuming calcu-
lations necessary for dense and complex formal specifications, the storage of concepts
is of major importance in our case.

3.2 Multi-dimensional Problem

The reconstruction of concepts within an artifact is not trivial. In order to reconstruct
(or better approximate) the concepts a former developer had in mind, one has to take
into account that different facets led to the writing of the artifact:

– The environment and context of the problem. There are maybe several assumptions
the developer had to consider and that are not fully documented. So, an artifact only
makes sense when put into the right context.

– The concepts inherent in the language. Different (programming) languages are dif-
ferently suitable for describing problems. In fact, the semantics behind a language
is often used to reduce writing effort. E.g. dependencies do not have to be made ex-
plicit, names are declared once, and it is clear when they are usable and when not.
Those concepts, let us call them ”behind the scenes”, are important for grasping
the whole meaning.

www.manaraa.com

Identification and Storage of Concepts in the Focus of Formal Z Specifications 251

Fig. 1. (Left) An artifact contains concepts in three different dimensions and at different levels.
(Right) Specifications are dismantled into syntactical elements (primes) and then extended by
dependency and scope annotations.

– Concepts made explicit in the source. The concepts mentioned above are problem-
and language-inherent. What is left are those concepts that are visible in the arti-
fact. E.g. a case-statement represents an n-ary decision, and its meaning is clearly
defined. Such concepts are called ”before the scenes”.

When one is at least familiar with the problem field and the environment, the identifica-
tion of the concepts behind and before the scenes might be seen as a multidimensional
problem. Fig. 1 (left side) demonstrates this viewpoint.

The (Syntactic) Representation Level. At first, there is the artifact itself. It has
been written in some pre-defined language, with clearly defined rules for its syntax.
It is assumed that it can be divided into a structured set of basic elements (primes,
statements, paragraphs ...). This sequence of elements, its nouns and verbs, and the
structure make up a lot of the underlying concept(s). Thus, the representation level
deals with the source and the structure of the artifact.

The (Semantic) Model Level. In general, a language comes along with a clearly
defined semantics (e.g. statements have to be put into some order). This implies a spe-
cific meaning and leads to several dependencies and relations between the elements (see
Fig. 1). These rules are not written down in the artifact, but belong to it and make up
another part of the underlying concept(s). They can be seen as named concepts, going
back to the semantic possibilities of the language at hand.

The (Semantic) Concept Level. What is left are the concepts the developer ex-
presses unconsciously. They describe specific aspects of the problem and are recogniz-
able when looking at the artifact from some distance. These mental macros, as Baxter
et. al. [25] call them, express higher-level concepts, and program comprehension tech-
niques are typically used to carve them out. To this dimension belong concepts like
slices [26], chunks [27], clichés [28], and different types of clusters [29].

To exemplify the situation, the calculation of a specification or program slice (stored
in the concept level) depends on the concept of dependencies (model level), the concept
of scope (model level), and the basic elements in the source (representation level). When
these concepts (at different levels) are calculated they can be stored in a database for
later use.

www.manaraa.com

252 D. Pohl and A. Bollin

4 Formal Specification Concepts

The model presented above has been mapped to a database schema and forms the ba-
sis for the concept location process. Though the strength of the framework is to deal
with different types of documents, our experiences arise from the scope of maintaining
formal Z specifications – which also was the starting point of the requirements’ consid-
erations. The specification concepts we are interested in are those as described in more
detail in [22]: slices, chunks, and clusters.

4.1 Conceptual Elements

A formal specification concept is a coherent, abstract (or generic) pattern of specifi-
cation text that is generalized from particular instances of the specification. It can be
understood and recognized as a whole even when standing alone.

As explained in more detail in [22, p.81], the basic elements such concepts are
built upon are called specification primes. Such formal specification primes (also called
prime-objects) also represent the basic entities of a specification. They are built from
literals of the specification and form logic, syntactic, or semantic units. A prime is a syn-
tactically coherent sequence of literals within a specification, forming semantic entities
that can be paraphrased by a short sentence in natural language.

With programming languages, primes would be programming statements. In the case
of formal Z specifications these primes are declarations, definitions, and predicates.
Fig. 1 (to the right) marks the primes by dashed ellipses, e.g. the prime ”name? �∈
known” (the second prime from below).

When primes are combined they do form so-called higher-level primes. The Add
schema operation in Fig. 1 is an example of such a higher-level prime, telling the user
about the things happening when the operation applies.

4.2 Specification Concepts

Concepts within formal specifications are identified in an iterative manner [22, p.83].
Starting with a domain-level request, one forms a mental model of the problem in mind
and concept location is about to begin. Concept candidates are identified and matched
against the model of the problem. When the candidates match, the concept is (very
likely) identified and the elements of the related candidates are tagged. The concept lo-
cation process makes use of the following steps: pattern matching, slicing and chunking,
and cluster identification.

As explained in [30], experienced users first browse the text and try to identify rel-
evant parts by grep-ing for keywords. When this is not successful, more complicated
methods are used. Structures are especially of interest, and clustering is a feasible way
in identifying related regions. The selection might be based on the use of identifiers,
or on the number of dependencies that glue the primes together. Similarly, slices and
chunks can be generated for a point of interest by just looking at specific primes and by
following different types of dependencies.

Specification concepts are identified by looking at dependencies among primes. For
the calculation of slices, chunks, and clusters, control- and data-dependencies are needed,

www.manaraa.com

Identification and Storage of Concepts in the Focus of Formal Z Specifications 253

and though these dependencies are not explicitly available, they can be reconstructed by
looking at pre- and post- conditions. The approach goes back to the work of Oda and
Araki [31] and has been refined in [32,24]. The basic idea is that, within a specific scope,
primes that are part of post-conditions are dependent on primes that contribute to pre-con-
ditions. In order to ease their identification, all primes get tagged with annotations. For
every identifier used in a prime the following meta-information is assigned to the prime:
CI (channel input) when it is an input identifier which is decorated by a ? , CO (channel

output) for an result identifier decorated by an ! , D (declaration) for an identifier that

denotes the identifier’s after-state and which is decorated by a ’ , T (type declaration)
for identifiers that are declared, and U (used) otherwise. So, the two Z primes (of the Add
schema in Fig. 1)

P1 : name? �∈ known
P2 : birthday′ = birthday ∪ {name? �→ date?}

would be tagged as follows. Prime P1 is annotated by {CI �→ {name}, U �→ {known}},
and prime P2 is annotated by{D �→ {birthday}, U �→ {birthday},CI �→ {name, date}}.
Post-condition primes are those primes that have a tag containing a D or CO set. In our
case P2 would be a post-condition prime, prime P1 is a so-called pre-condition prime.

The identification of dependencies is explained in more details in [24, pp.126–132].
However, when the meta-information is stored in the database (and assigned to the
prime objects), the queries are quite simple. Our agents, as introduced in Sec. 5.2, make
use of this meta-information in form of SQL queries.

5 Concept Location Framework

The framework for identifying the different concepts in Z specifications is designed to
cope with different types of artifacts. It implements a traditional client-server architec-
ture pattern based on the EJB Technology. The client is responsible for visualizing the
results and for triggering the concept extraction. On the server side it is designed to
handle different types of artifacts. Whenever a document is stored, different analysis
tasks are started by a scheduler extracting concepts, and the findings are stored in the
database again (see Sec. 5.2).

5.1 Database

The database forms the basis for the management of conceptual elements and their de-
pendencies, sustaining the concept location process of formal Z specification
documents.

There are four areas covered by the database. Three of these areas are related to
the multi-dimensional view as described in Sec. 3.2. The forth area is used for the
management of artifacts within the software engineering life-cycle.

Management/Project Pane. Based on the software engineering process, the Manage−
ment/Project section deals with the management of artifacts within different phases of

www.manaraa.com

254 D. Pohl and A. Bollin

Fig. 2. The four different panes of the database model (Please note that for reasons of space only
the major entities are shown. See [33] for more details.)

the project. There, a Project consists of different Phases. Within each phase Artifacts are
created, most of them depending on each other. Different artifact versions might exist.
Hence, the database schema takes this into account by assigning the ArtifactMetaData
information to an artifact.

(Syntactic) Representation Pane. Every artifact, independently of its nature, consists
of a certain structure. This structure is built upon so called SyntaxElements. SyntaxEle−
ments are characterized by their ElementTypes:

– Content: It represents a pure structural element (so-called basic elements like sen-
tences, expressions, or statements).

– Presentation: Text is often decorated (e.g. by boxes). As sometimes this decoration
carries information, it is also stored.

– Aggregation: It provides the possibility to explicitly mark higher-level concepts that
have been created by the aggregation of basic elements.

Syntax elements carry a lot of information. E.g. they refer to identifiers, define labels,
or describe some input operations. A set of meta-data is introduced to store them. Every
data entry of ElementMetaData belongs to a specific AnnotationType, and so different
(but consistent) categorizations get possible.

Model Concept Pane. A Concept corresponds to one or several syntactical elements
(SyntaxElements). For different types of concepts also different relationships are possi-
ble. This is done by the CombinationType entity. Besides, it is possible to express some

www.manaraa.com

Identification and Storage of Concepts in the Focus of Formal Z Specifications 255

kind of direction or ordering between the related elements. The characterization of a
concept is made up by the ConceptType entity. Concepts also form hierarchies, and to
express these relations, an n-to-m recursive relationship is introduced.

Concept View Pane. The database schema allows for different views onto the con-
cepts, be them explicitly or implicitly available. The main purpose of the View entity
is to cluster related concepts (concepts of the same type) or to form different views
onto the current artifact. This information is, besides the creation date, stored in the
ViewMetaData entity. Every view belongs to a certain category. This classification is
stored in the ViewType.

It is also possible to annotate a view with ViewData entries of specific ViewDataTypes.
Those entries are, e.g., used to store metrics of clusters or other characteristics relevant
for concepts within the view. These steps are carried out by agents like those introduced
in the following section.

5.2 Agents

Our prototype provides different agents: scope agents that regard scope rules of Z,
dependency agents for reconstructing dependencies, and, based on them, slice/chunk/
cluster agents for carving out higher-level concepts.

For the creation of slices or chunks typically two different types of dependencies
(data-, and control-dependencies) and the syntactical environment are necessary. So, at
first, these dependencies have to be extracted, but the extraction is complicated due to
language-specific scope rules. The first task for our framework is therefore to recon-
struct the concepts representing the scope.

In the context of formal Z specifications three types of scopes can be identified (and
are calculated by three agents in our framework). The Declaration Scope represents all
visible declarations for a prime in the specification. The scope is also needed to derive
the syntactical dependencies and thus for building syntactically correct partial specifi-
cation. The State Scope deals with schema inclusions within a specification document
and aggregates the primes of the inclusion and the primes of the including schemata (see
Fig. 1, Add(State) for an example). Finally, the Connectivity Scope merges all primes of
two or more schemata combined via schema operations.

In our framework, at first, the agents launch queries to identify the correct scopes,
then they start reconstructing control- and data dependencies. Sec. 5.3 demonstrates the
simplicity on the example of control dependency identification.

After scope and dependency calculation the Slice and Chunk agents can be activated
by the user. Beginning with a ”point of interest” (a set of primes), the agents calculate
slices and chunks by following the stored control- and data dependencies. The results
are again stored in the database for later use.

The last agent presented here is called Clustering Agent. It is responsible for the
generation of clusters of a specification document. In order to ease deciding about the
most useful number of clusters to be generated, the agent pre-calculates and stores
all variants of them. Every cluster view is then extended by meta-information. This
meta-data describes different types of cluster-metrics, like the partition entropy or the
partition coefficient measure. This information can later help the user to decide about
the usefulness of the clusters.

www.manaraa.com

256 D. Pohl and A. Bollin

Some of the agents are executed in parallel; other agents have to wait. Therefore all
agents are registered in an agent scheduler, which is responsible for the right execution
order.

5.3 Queries for Concept Location

Our framework makes use of a simple idea: the calculation logic is moved from tra-
ditional program code to SQL queries disposed by the agents. The extraction is done
by expressions which are based on the annotations of the primes in the database. For Z
documents the necessary queries are already implemented.

To demonstrate the elegance of the queries we look at the steps necessary to carve
out control dependencies from Z specifications. The relevant primes in the database are
the syntax elements tagged by the Content element type. The extraction-process then
uses the State and Connectivity Scope for the calculation.

Πsid σAnnotationType.name=”D”

((σConcept.id=actConcept ��

(σConceptType.name=”State”ConceptType))

�� SyntaxElement ��

ElementMetaData �� AnnotationType)

(1)

Πsid(σConcept.id=actConcept ��

(σConceptType.name=”State”ConceptType))

[sid
= sid]

Πsid

(σ AnnotationType.name�=”T”or
AnnotationType.name�=”C”orAnnotationType.name�=”D”

SyntaxElement �� ElementMetaData

�� AnnotationType)

(2)

The queries (1) and (2) above extract control–dependencies of the Add schema op-
eration of the ’Birthday Book’-Specification (where act represents the identifier of the
current State Scope). The queries lead to the source (S) and destination (D) primes for
the dependency arcs. In fact, the results of the queries are elements of the SyntaxElement
entity. The agent takes all elements resulting from the first query and connects them
to the resulting elements of the second query. Every pair forms a Concept within the
database. This information is stored in the database and results in the concept entries
Control-Dep. (1) and Control-Dep. (2)) as exemplified in Fig. 1.

The identification of data–dependencies is similar to that of control–dependencies.
Its only difference is related to the U tag, and the consideration of the name of an
identifier. A detailed description of the queries for scope and dependency calculation
can be found in [33, p.102-106].

Table 1. Complexity attributes and calculation time (in seconds)

Specification Lines Pages A4 Primes CD DD ViZ [s] EJB/DB [s] Concepts

BB 40 2 34 10 5 4.6 7.0 36
Cinema 95 4 74 121 43 75.3 43.2 114
Petrol 88 3 65 192 177 152.9 51.9 219

Elevator 193 6 185 1,628 992 1,223.4 709.3 984

www.manaraa.com

Identification and Storage of Concepts in the Focus of Formal Z Specifications 257

6 Evaluation

The evaluation of the framework was carried out in two steps. First, the correctness
of the identified concepts were checked, and, secondly, the usefulness in respect to
performance explored. In fact, both steps also hearken back to results we gained from
the existing ViZ framework.

6.1 Setting and Correctness

The first step was the validation of the concepts that have been identified by the agents
and stored in the database. The evaluation involves specifications of raising sizes, known
as Birthday Book [3], Petrol Station [24], and Elevator [32]. Additionally, a student’s
specification (Cinema) was added to the set. Tab. 1 (left part) summarizes the key at-
tributes in order to assess the complexity of the specifications. It exemplifies the number
of lines, pages (when printed), primes, control- (CD), and data dependencies (DD).

The correctness of the identified concepts was checked in two steps. At first, the new
framework was used to identify dependencies, slices, and chunks. The results were then
exported to a structured file. In a second step these entries have been compared to the
concepts and dependencies identified by the ViZ framework. As Tab. 1 (right column)
demonstrates, this involved 1353 concepts (consisting of slices and chunks for every
prime occurring in the predicate part of every schema) and 3168 dependencies (CD
and DD).

6.2 Performance Considerations

As every dependency and concept has been detected correctly, we were also eager to
see whether the framework scales and improves operating speed. In fact, in our case

Fig. 3. Performance considerations between the ViZ and the EJB framework

www.manaraa.com

258 D. Pohl and A. Bollin

operation time it up to (a) dependency calculation, (b) storage and retrieval, and (c)
concept identification.

In the case of ViZ the calculation of dependencies (and thereinafter slices or chunks)
is time-consuming. ViZ uses an annotated graph to store primes and its connections,
and dependency calculation is based on reachability considerations. It has a runtime
performance of O(n ∗ (m + n ∗ log ∗ n)) (with n related to the number of primes and m
related to the number of dependencies in the specification). The new framework consid-
ers Def-Use equations based on scope relations (that are stored in the database), and its
runtime complexity is in O(n2). Tab. 1 (center part) presents the time needed to calcu-
late all dependencies for the ViZ environment and the EJB based framework (where the
system consisted of a Windows XP Professional OS, Intel Core2 CPU, 2.00GHz, 2 GB
RAM). This difference can also be seen in Fig. 3 (top left). Though ViZ does not store
the elements in a database, the total time is much higher due to the extra time needed
for control and data dependency calculation.

The type of the database access is also crucial for the performance. The most com-
plex artifact in our considerations is the Elevator specification, and it takes about ten
minutes till all dependencies are analyzed (and about 2,600 data-sets are stored for later
use). As a few thousand data-sets are not so much for a database, we were eager to
know why it took so long.

It turned out that a lot of time is lost due to EJB’s synchronization between the
database and Java’s objects. The overhead is about one-third of the time. Furthermore,
there is very high execution time latency between EJB and its corresponding JDBC
queries. As explained in more details in [34, p.234], in our setting JDBC scales about
six times better than EJB. Fig. 3 (top right) demonstrates this time-differences on the
example of the elevator specification.

The calculation of concepts like slices or chunks implies looking at a specific prime
and following the relevant dependencies. Fig. 3 (bottom left) shows that ViZ is defini-
tively faster than the new environment. There, all possible slices for three different
specifications have been generated once and the total time measured. ViZ is much faster,
which is not surprising as it’s internal graph already contains the dependencies as arcs
and they do not have to be read from a database. However, the new framework stores the
slice as a view for later use, and calculated once, it does not have to be (re-)calculated
again.

Considering the above observations, the new framework seems to be an improvement
in the case of concept location environments for Z specifications. Fig. 3 (bottom right)
demonstrates this by accumulating the time till all possible slices have been calculated
once. ViZ is faster at the beginning, as it does not store the elements in a database,
but the new framework invests in storing the syntactical elements in the database and
assigns scope information to it. This investment pays back when dependencies are to
be calculated, and it outpaces ViZ. Retrieving the concepts then is slower, but merely
depends on the number of elements to be retrieved by a select operator. In addition to
that, they have only to be retrieved once, as after retrieval they are stored as a view in
the database. Here the strengths of a relational database pay off.

Though the new framework is faster, we conclude from the analysis above that the
use of EJB is less suitable. It brings maintenance advantages, but, as also addressed in

www.manaraa.com

Identification and Storage of Concepts in the Focus of Formal Z Specifications 259

[34], one has to expect performance loss that should not be neglected. For this reason we
are currently working on a new release of the framework that replaces the middleware
technology by JDBC.

7 Conclusions

This paper introduces the problem of concept location within state-based specifications
and motivates for a framework that persistently stores concepts for later use and fast ac-
cess. Starting with a thorough analysis of concept location aspects, a database schema
has been developed which, thereinafter, forms the basis for our concept location frame-
work for formal Z specifications.

The paper then introduces the key ideas behind our prototype. Besides storing con-
cepts, it is based upon the idea of individual agents that quickly identify different rela-
tions among syntactical elements (of our specification) stored in the MySQL database.
Their elegance originates from the fact that an SQL database is very efficient in looking
for specific relations between elements, and thus most of the calculation logic could be
put into slim SQL queries.

The evaluation is based on a comparison with ViZ, an already existing concept lo-
cation framework for Z specifications. The evaluation shows that it produces the same
results than ViZ, but calculation times varied. The performance of the framework was
strongly influenced by EJB. The analysis of JDBC and EJB shows a high factor of per-
formance loss when using EJB. JDBC scales about six times better than EJB in terms of
runtime. Additionally, EJB implements an intermediate layer and, therefore, runs into
performance latencies. It is going to be replaced by JDBC in the next release of our
framework.

References

1. Mittermeir, R.T., Bollin, A.: Demand-driven Specification Partitioning. In: Proceedings of
the 5th Joint Modular Languages Conference (2003)

2. Wilde, N., Scully, M.C.: Software Reconnaissance: Mapping Program Features to Code.
Journal of Software Maintenance: Research and Practice 7, 49–62 (1995)

3. Spivey, J.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall International, En-
glewood Cliffs (1992)

4. Rational-XDE: IBM Rational XDE DeveloperWorks Home Page,
www.ibm.com/developerworks/rational/products/xde/ (Page last visited:
March 2009)

5. Eclipse-GMT: Homepage,
http://www.eclipse.org/gmt/ (Page last visited: March 2009)

6. Nickel, U., Niere, J., Wadsack, J., Zündorf, A.: Roundtrip Engineering with FUJABA.
In: Ebert, J., Kullbach, B., Lehner, F. (eds.) Proceedings of 2nd Workshop on Software-
Reengineering (WSR), Bad Honnef, Germany (August 2000)

7. Jouault, F.: Loosely Coupled Traceability for ATL. In: Proceedings of the European Confer-
ence on Model Driven Architecture (ECMDA 2005), Workshop on Traceability (2005)

8. MetaEdit+: Homepage, www.metacase.com (Page last visited: March 2009)

www.ibm.com/developerworks/rational/products/xde/
http://www.eclipse.org/gmt/
www.metacase.com

www.manaraa.com

260 D. Pohl and A. Bollin

9. Müller, H.A., Tilley, S.R., Wong, K.: Understanding Software Systems Using Reverse Engi-
neering Technology Perspectives from the Rigi Project. In: CASCON 1993, October 1993,
pp. 217–226 (1993)

10. Koschke, R.: Software Visualization for Reverse Engineering. In: Diehl, S. (ed.) Dagstuhl
Seminar 2001. LNCS, vol. 2269, pp. 524–527. Springer, Heidelberg (2002)

11. Ferenc, R., Beszedes, A., Tarkiainen, M., Gyimothy, T.: Columbus – Reverse Engineering
Tool and Schema for C++. In: IEEE International Conference on Software Maintenance,
Montreal, Canada, pp. 172–181 (2002)

12. Korshunova, E., Petkovic, M., van den Brand, M.G.J., Mousavi, M.R.: CPP2XMI: Reverse
Engineering of UML Class, Sequence, and Activity Diagrams from C++ Source Code (Tool
Paper). In: Working Conference on Reverse Engineering (WCRE 2006), Benevento, Italy
(2006)

13. Computer Human Interaction and Software Engineering Lab (CHISEL): SHriMP Home-
page, www.thechiselgroup.org/shrimp (Page last visited: October 2008)

14. Holt, R.: PBS – The Portable Bookshelf Homepage,
http://www.swag.uwaterloo.ca/pbs/intro.html (Page last visited: Octo-
ber 2008)

15. Ebert, J., Kullbach, B., Riediger, V., Winter, A.: GUPRO – Generic Understanding of Pro-
grams – An Overview. Electronic Notes in Theoretical Computer Science 72(2) (2002)

16. Holt, R., Schürr, A., Sim, S.E., Winter, A.: GXL Graph Exchange Library Homepage,
http://www.gupro.de/GXL/ (Page last visited: April 2008)

17. Chen, K., Rajlich, V.: RIPPLES: Tool for Change in Legacy Software. In: IEEE International
Conference on Software Maintenance, p. 230. IEEE Computer Society, Los Alamitos (2001)

18. Xie, X., Poshyvanyk, D., Marcus, A.: 3D Visualization for Concept Location in Source
Code. In: Proceedings of 28th IEEE/ACM International Conference on Software Engineering
(ICSE 2006), May 20–28, pp. 839–842 (2006)

19. Poshyvanyk, D., Marcus, A.: Combining Formal Concept Analysis with Information Re-
trieval for Concept Location in Source Code. In: Proceedings of the 15th IEEE International
Conference on Program Comprehension (ICPC 2007), June 26–29, pp. 37–48 (2007)

20. Agerholm, S., Larsen, P.G.: Applied Formal Methods – FM-Trends 98. In: Hutter, D.,
Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641, pp. 326–339. Springer, Heidelberg
(1999)

21. Engineering, C.S.: The Atelier-B Homepage,
http://www.atelierb.eu/index-en.php (Page last visited: June 2009)

22. Bollin, A.: Concept Location in Formal Specifications. Journal of Software Maintenance and
Evolution: Research and Practice 20(2), 77–104 (2008)

23. Bollin, A.: The Efficiency of Specification Fragments. In: Proceedings of the 11th IEEE
Working Conference on Reverse Engineering (2004)

24. Bollin, A.: Specification Comprehension – Reducing the Complexity of Specifications. PhD
thesis, Universität Klagenfurt (April 2004)

25. Baxter, I.D., Yahin, A., Moura, L., SantAnna, M., Bier, L.: Clone Detection Using Abstract
Syntax Trees. In: Proceedings of the International Conference on Software Maintenance, pp.
368–377. IEEE Computer Society, Los Alamitos (1998)

26. Weiser, M.: Program Slices: Formal, Psychological, and Practical Investigations of an Auto-
matic Program Abstraction Method. PhD thesis, University of Michigan (1979)

27. Burnstein, I., Roberson, K., Saner, F., Mirza, A., Tubaishat, A.: A Role for Chunking and
Fuzzy Reasoning in a Program Comprehension and Debugging Tool. In: TAI 1997, 9th In-
ternational Conference on Tools with Artificial Intelligence, November 1997. IEEE press,
Los Alamitos (1997)

www.thechiselgroup.org/shrimp
http://www.swag.uwaterloo.ca/pbs/intro.html
http://www.gupro.de/GXL/
http://www.atelierb.eu/index-en.php

www.manaraa.com

Identification and Storage of Concepts in the Focus of Formal Z Specifications 261

28. Broad, A., Filer, N.: Applying Case-Based Reasoning to Code Understanding and Gen-
eration. In: Proceedings of the Fourth United Kingdom Case-Based Reasoning Workshop
(UKCBR4), University of Salford, Salford, England, September 1999, pp. 35–48 (1999)

29. Wiggerts, T.: Using Clustering Algorithms in Legacy System Remodularization. In: Proceed-
ings of the 4th Working Conference on Reverse Engineering (WCRE 1997). IEEE Press, Los
Alamitos (1997)

30. Rajlich, V., Wilde, N.: The Role of Concepts in Program Comprehension. In: International
Workshop on Program Comprehension, pp. 271–278. IEEE Computer Society, Los Alamitos
(2002)

31. Oda, T., Araki, K.: Specification slicing in a formal methods software development. In: Sev-
enteenth Annual International Computer Software and Applications Conference, November
1993, pp. 313–319. IEEE Computer Socienty Press, Los Alamitos (1993)

32. Chang, J., Richardson, D.: Static and Dynamic Specification Slicing. In: Proceedings of the
Fourth Irvine Software Symposium, Irvine, CA (April 1994)

33. Pohl, D.: Specification Comprehension – Konzeptverwaltung am Beispiel zustandsbasierter
Spezifikationen (in German). Master’s thesis, University of Klagenfurt, Software Engineer-
ing and Soft Computing (Juli 2008)

34. Pohl, D., Bollin, A.: Database-Driven Concept Management – Lessons Learned from Using
EJB Technologies. In: 4th International Conference on Evaluation of Novel Approaches to
Software Engineering (May 2009)

www.manaraa.com

A Model Driven Approach to Upgrade Package-Based
Software Systems�

Antonio Cicchetti1, Davide Di Ruscio1, Patrizio Pelliccione1,
Alfonso Pierantonio1, and Stefano Zacchiroli2

1 Università degli Studi dell’Aquila, Dipartimento di Informatica, Italy
{cicchetti,diruscio,pellicci,alfonso}@di.univaq.it

2 Université Paris Diderot, PPS, UMR 7126, France
zack@pps.jussieu.fr

Abstract. Complex software systems are often based on the abstraction of pack-
age, brought to popularity by Free and Open Source Software (FOSS) distribu-
tions. While helpful as an encapsulation layer, packages do not solve all problems
of deployment, and more generally of management, of large software collections.
In particular upgrades, which can affect several packages at once due to inter-
package dependencies, often fail and do not hold good transactional properties.
This paper shows how to apply model driven techniques to describe and manage
software upgrades of FOSS distributions. It is discussed how to model static and
dynamic aspects of package upgrades—the latter being the more challenging to
deal with—in order to be able to predict common causes of upgrade failures and
undo residual effects of failed or undesired upgrades.

Keywords: Model-driven engineering, Software change and configuration
management, Metamodeling, Open source, Package.

1 Introduction

Increasingly, software systems are designed to routinely accommodate new features
before and after the deployment stage. The deriving evolutionary pressure requires the
system design and architecture to have enhanced quality factors: in particular, they have
to retain the (user perceived as well as system-intrinsic) dependability at a satisfactory
level and make component installation/removal operations less haphazard [2].

Free and Open Source Software (FOSS) distributions are among the most complex
software systems known, being made of tens of thousands components evolving rapidly
without centralized coordination.Similarly to other software distribution infrastructures,
FOSS components are provided in “packaged” form by distribution editors. Packages
define the granularity at which components are managed (installed, removed, upgraded
to newer version, etc.) using package manager applications, such as APT1 or Apache
maven2. Furthermore, the system openness affords an anarchic array of dependency

� Preliminary results appeared in [1].
1 APT howto: http://www.debian.org/doc/manuals/apt-howto
2 Apache Maven Project: http://maven.apache.org

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 262–276, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.manaraa.com

A Model Driven Approach to Upgrade Package-Based Software Systems 263

modalities between the adopted packages. These usually contain maintainer scripts,
which are executed during the upgrade process to finalize component configuration. The
adopted scripting languages have rarely been formally investigated, thus posing addi-
tional difficulties in understanding their side-effects which can spread throughout the
system. In other words, even though a package might be viewed as a software unit, it
lives without a proper component model usually defining standards (e.g., how a com-
ponent interface has to be specified and how components communicate) [3,4] which
facilitate integration and assure that components can be upgraded in isolation.

The problem of maintaining FOSS installations, or similarly structured software dis-
tributions, is intrinsically difficult and a satisfactory solution is missing. Today’s avail-
able package managers lack several important features such as complete dependency
resolution and roll-back of failed upgrades [5]. Moreover, there is no support to sim-
ulate upgrades taking the behavior of maintainer scripts into account. In fact, current
tools consider only inter-package relationships which are not enough to predict side-
effects and system inconsistencies encountered during upgrades.

This work is part of the MANCOOSI3 project which aims at improving the manage-
ment of complex software systems built of composable units evolving independently.
In particular, this paper describes a model-driven approach to specify system config-
urations and available packages. Maintainer scripts are described in terms of models
which abstract from the real system, but are expressive enough to predict several of
their effects on package upgrades. Intuitively, we provide a more abstract interpretation
of scripts, which focuses on the relevant aspects to predict the operation effects on the
software distribution. To this end, models can be used to drive roll-back operations to
recover previous configurations according to user decisions or after upgrade failures.

The paper is structured as follows: Section 2 describes the upgrade process of FOSS
packages and, briefly, the MANCOOSI project. Section 3 describes a model driven ap-
proach to (i) specify system configurations and packages, (ii) simulate the installation of
software packages, (iii) assist roll-backs. Section 4 analyzes the FOSS domain and in-
troduces the required modeling constructs which are captured in different metamodels.
Finally, Sections 5 and 6 present related and future work, respectively.

2 Packages, Upgrades and Failures

Overall, the architectures of all FOSS distributions are similar. Each user machine has
a local package status recording which packages are currently installed and which are
available from remote repositories. Package managers are used to manipulate the pack-
age status and can be classified in two categories [6]: installers, which deploy individual
packages on the filesystem (possibly aborting the operation if problems are encoun-
tered) and meta-installers, which act at the inter-package level, solving dependencies
and conflicts, and retrieving packages from remote repositories as needed. In an up-
grade scenario, a user request (install, remove, upgrade to a newer version, etc.) is
submitted to a meta-installer to change the system configuration status; the aim of the
meta-installer is then to find a suitable upgrade plan, where one exists. In the rest of the

3 MANCOOSI project: http://www.mancoosi.org

www.manaraa.com

264 A. Cicchetti et al.

section we give a brief description of packages (as they can be found in current distri-
butions), their role in the upgrade process, and the failures that can impact on upgrade
deployment.

Packages. Abstracting over format-specific details, a package is a bundle of three main
parts: (1) set of files, (2) meta-information, (3) maintainer scripts. The core of a package
is the set of files (1) that ships: executable binaries, data, documentation, etc. Configu-
ration files are a distinguished subset of shipped files, which are tagged as affecting the
runtime behavior of the package and meant to be customized by local administrators.
Configuration files need to be present in the bundle (e.g., to provide sane defaults or
documentation), but need of special treatment: during upgrades they cannot be simply
overwritten by newer versions, as they may contain local changes which should not be
thrown away.

Package meta-information (2) is used by meta-installers to design upgrade plans. De-
tails change from distribution to distribution, but a common core of meta-information
consists of: a unique identifier (the name), software version, maintainer and package de-
scription, inter-package relationships. These relationships represent the most valuable
information for dependency resolution and usually include: dependencies (the need of
other packages to work properly), conflicts (the inability of being co-installed with other
packages), feature provisions (the ability to declare named features as provided by a
given package, so that other packages can depend on them), and boolean combinations
of them [6].

Packages come with a set of executable maintainer (also known as “configuration”)
scripts (3). Their purpose is to attach actions to hooks invoked by the installer. The most
common use case for maintainer scripts is to update some cache, blending together data
shipped by the package, with data installed on the system, possibly by other packages.
Three facets of maintainer scripts are noteworthy:
(a) maintainer scripts are full-fledged programs, written in Turing-complete program-
ming languages. They can do anything permitted to the installer, which is usually run
with system administrator rights;
(b) the functionality of maintainer scripts can not be substituted by just shipping extra
files: the scripts often rely on data which are available only in the target installation
machine, and not in the package itself;
(c) maintainer scripts are required to work “properly”: upgrade runs, in which they fail,
trigger upgrade failures and are usually detected via inspection of script exit code.

Upgrades. Table 1 summarizes the different phases of what we call the upgrade pro-
cess, using as an example the popular APT meta-installer. The process starts in phase
(1) with the user requesting to alter the local package status. The expressiveness of the
requests varies with the meta-installer, but the aforementioned actions (install, remove,
etc.) are ubiquitously supported.

Phase (2) checks whether a package satisfying dependencies and conflicts exists (the
problem is at least NP-complete [6]). If this is the case one is chosen in this phase.
Deploying the new status consists of package retrieval, phase (3), and unpacking, phase
(4). Unpacking is the first phase actually changing both the package status (to keep
track of installed packages) and the filesystem (to add or remove the involved files).

www.manaraa.com

A Model Driven Approach to Upgrade Package-Based Software Systems 265

Table 1. The package upgrade process

Intertwined with package retrieval and unpacking, there can be several configuration
phases, (exemplified by phases (5a) and (5b) in Table 1), where maintainer scripts get
executed. The details depend on the available hooks; dpkg offers: pre/post-installation,
pre/post-removal, and upgrade to some version [7].

Exemple 1. PHP5 (a scripting language integrated with the Apache web server) exe-
cutes as its postinst (post-installation) script the following snippet, on the left hand-
side:

Note that prerm is executed before removing files from disk, which is necessary to
avoid reaching an inconsistent configuration where the Apache server is configured to
rely on no longer existing files. The expressiveness of inter-package dependencies is not
enough to encode this kind of dependencies: Apache does not depend on php5 (and
should not, because it is useful also without it), but while php5 is installed, Apache
needs specific configuration to work in harmony with it; at the same time, such con-
figuration would inhibit Apache to work properly once php5 gets removed. The book-
keeping of such configuration intricacies is delegated to maintainer scripts.

Failures. Each phase of the upgrade process can fail. Dependency resolution can fail
either because the user request is unsatisfiable (e.g., user error or inconsistent distri-
butions [8]) or because the meta-installer is unable to find a solution. Completeness—
the guarantee that a solution will be found whenever one exists—is a desirable meta-
installer property unfortunately missing in most meta-installers, with too few claimed
exceptions [9].

www.manaraa.com

266 A. Cicchetti et al.

Package deployment can fail as well. Trivial failures, e.g., network or disk failures,
can be easily dealt with when considered in isolation from the other upgrade phases: the
whole upgrade process can be aborted and unpack can be undone, since all the involved
files are known. Maintainer script failures can not be as easily undone or prevented,
since all non-trivial properties about scripts are undecidable, including determining a
priori which parts of file-system they affect to revert them a posteriori.

The MANCOOSI project is working to improve upgrade support in complex software
systems such as FOSS distributions. On one hand the project is working on algorithms
for finding optimal upgrade paths addressing complex preferences, on the other is work-
ing on models and tools to (i) simulate the execution of maintainer scripts, (ii) predict
side-effects and system inconsistences which might be raised by package upgrades, and
(iii) instruct roll-back operations to recover previous configurations according to user
decisions or after upgrade failures. In the rest of this paper we introduce the approach
we are using, in the context of MANCOOSI, to attack the problems of package upgrades,
namely: modeling of the involved entities and upgrade simulation.

3 Proposed Approach

As discussed, the problem of maintaining FOSS installations is far from trivial and has
not yet been addressed properly [5]. In particular, current package managers are neither
able to predict nor to counter vast classes of upgrade failures. The reason is that pack-
age managers rely on package meta-information only (in particular on inter-package
relationships), which is not expressive enough. Our proposal consists in maintaining a
model-based description of the system and simulate upgrades in advance on top of it,
to detect predictable upgrade failures and notify the user before the system is affected.
More generally, the models are expressive enough to isolate inconsistent configurations
(e.g., situations in which installed components rely on the presence of disappeared sub-
components), which are currently not expressible as inter-package relationships.

The adoption of model-driven techniques presents several advantages: a) models can
be given at any level of abstraction depending on the analysis and operations one would
like to perform as opposed to package dependency information whose granularity is
fixed and often too coarse; b) complex and powerful analysis techniques are already
available to detect model conflicts and inconsistencies [10,11]. In particular, contradic-
tory patterns can be specified in a structural way by referring to the domain underlying
semantics in contrast with text-based tools like version control systems where conflicts
are defined at a much lower level of abstraction as diverging modifications of the same
lexical element.

Figure 1 depicts the proposed approach. Basically, to simulate an upgrade run, two
models are taken into account: the System Model and the Package Model (see the ar-
row a©). The former describes the state of a given system in terms of installed pack-
ages, running services, configuration files, etc. The latter provides information about the
packages involved in the upgrade, in terms of inter-package relationships. Moreover,
since a trustworthy simulation has to consider the behavior of the maintainer scripts
which are executed during the package upgrades, the package model specifies also an
abstraction of the behaviors of such scripts. There are two possible simulation out-
comes: not valid and valid (see the arrows c© and d©, respectively). In the former case

www.manaraa.com

A Model Driven Approach to Upgrade Package-Based Software Systems 267

Fig. 1. Overall approach

it is granted that the upgrade on the real system will fail. Thus, before proceeding with
it the problem spotted by the simulation should be fixed. In the latter case—valid—
the upgrade on the real system can be operated (see the arrow i©. However, since the
models are an abstraction of the reality, upgrades failures might occur.

During package upgrades Log models are produced to store all the transitions be-
tween configurations (see arrow b©). The information contained in the system, pack-
age, and log models (arrows e© and f©) are used in case of failures (arrow l©) when
the performed changes have to be undone to bring the system back to the previous valid
configuration (arrow g©). Since it is not possible to specify in detail every single part
of systems and packages, trade-offs between model completeness and usefulness have
been evaluated; the result of such a study has been formalized in terms of metamodels
(see next section) which can be considered one of the constituting concepts of Model
Driven Engineering (MDE) [12]. They are the formal definition of well-formed models,
constituting the languages by which a given reality can be described in some abstract
sense [13] defining an abstract interpretation of the system.

Even though the proposed approach is expressed in terms of simulations, the entailed
metamodels do not mandate a simulator. Hybrid architectures composed by a package
manager and metamodel implementations can be more lightweight than the simulator,
yet being helpful to spot inconsistent configurations not detectable without metamodel
guidance.

4 Modeling System and Packages

The simulation approach outlined in the previous section is based on a set of coordi-
nated metamodels which have been defined by analyzing the domain of FOSS systems.
In general, a metamodel specifies the modeling constructs that can be used to define
models which are said to conform to a given metamodel like a program conforms to the
grammar of the programming language in which it is written [13].

In this work, we have considered two complex FOSS distributions (the Debian4 and
Mandriva5 distributions). Their analysis has induced the definition of three metamodels
(see Figure 2) which describe the concepts making up a system configuration and a

4 http://www.debian.org
5 http://www.mandriva.com

www.manaraa.com

268 A. Cicchetti et al.

Fig. 2. Metamodels and their inter-dependencies

software package, and how to maintain the log of all upgrades. The metamodels have
been defined according to an iterative process concisting of two main steps a) elicitation
of new concepts from the domain to the metamodel b) validation of the formalization
of the concepts by describing part of the real systems. In particular, the analysis has
been performed considering the official packages released by the distributions with the
aim of identifying elements that must be considered as part of the metamodels. Due to
space constraints we report here only the results of the analysis, i.e., the metamodels
themselves:

– the System Configuration metamodel, which contains all the modeling constructs
necessary to make the FOSS system able to perform its intended functions. In par-
ticular it specifies installed packages, configuration files, services, filesystem state,
loaded modules, shared libraries, running processes, etc. The system configuration
metamodel takes into account the possible dependency between the configuration
of an installed package and other package configurations. The ability to express
such fine-grained and installation-specific dependencies is a significant advantage
offered by the proposed metamodels which embody domain concepts which are not
taken into account by current package manager tools;

– the Package metamodel, which describes the relevant elements making up a soft-
ware package. The metamodel also gives the possibility to specify the maintainer
script behaviors which are currently ignored—beside mere execution—by existing
package managers. In order to describe the scripts behavior, the package metamodel
contains the Statement metaclass, see Figure. 5, that represents an abstraction
of the commands that can be executed by a given script to affect the environment,
the file system or the package settings of a given configuration;

– the Log metamodel, which is based on the concept of transactions that represent
a set of statements that change the system configurations. Transitions can be con-
sidered as model transformations [13] which let a configuration C1 evolve into a
configuration C2.

As depicted in Figure 2, System Configuration and Package metamodels have mutual
dependencies, whereas the Log metamodel has only direct relations with both System
Configuration and Package metamodels.

4.1 Modeling Maintainer Scripts

The most challenging part of the conducted modeling process has been modeling main-
tainer scripts. The reason is twofold, on one hand maintainer scripts are the entities
which contribute the most to difficulties in dealing with upgrade failures; on the other

www.manaraa.com

A Model Driven Approach to Upgrade Package-Based Software Systems 269

hand maintainer scripts are also particularly challenging to model, due to their imple-
mentation language. Here we briefly report about the analysis (further details can be
found in [14,15]) which has enabled to discover recurrent patterns in the huge amount
of scripts to consider (e.g., about 25.000 on Debian Lenny). We tried to collect scripts
in clusters to be able to concentrate the analysis on representatives of the equivalence
classes identified. The adopted procedure for clustering has been as follows.

1. Collect all maintainer scripts of a given distribution. By not choosing a random
subset we are sure to have collected the most representative set of scripts.

2. Identify scripts generated from helper tools. A large number of scripts or part of
them is generated by means of “helper” tools that provide a collection of small,
simple and easily understood tools that are used to automate various common as-
pects of building a package. Since (part of) maintainer scripts are automatically
generated using these helpers and their boiler plates, we can concentrate the analy-
sis on the helpers themselves, rather than on the result of their usage.

3. Ignore inert script parts. As all scripting languages, shell scripts contain parts
which do not affect their computational state such as blank lines of comments.
Intertwined with the removal of generated parts (to be analyzed later on) we have
systematically ignored inert script parts, possibly leading upon removal to empty
scripts that have been therefore ignored as a whole.

4. Study of scripts written “by hand”. The remaining scripts need to be more carefully
studied, as they have been written from scratch by package maintainers to address
a specific need, most likely not covered by any helper tool. Actually we worked on
identifying recurrent templates that maintainers use when writing the scripts.

In the rest of the section, the conceived metamodels are described in more details
and some explanatory models conforming to them are also provided.

4.2 Configuration Metamodel

A system configuration is the composition of artifacts necessary to make computer
systems perform their intended functions [16]. In this respect, the metamodel depicted
in Figure 3 specifies the main concepts which make up the configuration of a FOSS
system. In particular, the Environmentmetaclass enables the specification of loaded
modules, shared libraries, and running process as in the sample configuration reported
in Figure 4. In such a model the reported environment is composed of the services www,
and sendmail (see the instances s1 and s2) corresponding to the running web and
mail servers, respectively.

All the services provided by a system can be used once the corresponding packages
have been installed (see the association between the Configuration and Package
metaclasses in Figure 3) and properly configured (PackageSetting). Moreover, the
configuration of an installed package might depend on other package configurations.
For example, considering the PHP5 upgrade described in Section 2, the instances ps1
and ps2 of the PackageSettingmetaclass in Figure 4 represents the settings of the
installed packagesapache2, and libapache-mod-php5, respectively. The former
depends on the latter (see the value of the attribute depends of ps1 in Figure 4) and
both are also associated with the corresponding files which store their configurations.

www.manaraa.com

270 A. Cicchetti et al.

Fig. 3. Fragment of the Configuration metamodel

Fig. 4. Sample Configuration model

Note that at the level of package meta-information such a dependency should not be
expressed, in spite of actually occurring on real systems. The ability to express such
fine-grained and installation-specific dependencies is a significant advantage offered by
metamodeling.

The configuration metamodel gives also the possibility to specify the hardware de-
vices of a system by means of the HardwareDevice metaclass. Due to space con-
straint the usage of such a metaclass is omitted; for more information the interested
reader can found the complete metamodels on the Web.6

6 http://www.di.univaq.it/diruscio/mancoosi

www.manaraa.com

A Model Driven Approach to Upgrade Package-Based Software Systems 271

Fig. 5. Fragment of the Package metamodel

The packages which are installed on a given system are specified by means of the
modeling constructs provided by the Package metamodel described in the next section.

4.3 Package Metamodel

The metamodel reported in Figure 5 plays a key role in the overall simulation. In fact, in
addition to the information already available in current package descriptions, the con-
cepts captured by the metamodel enable the specification of the behavior of maintainer
scripts. In this respect, the metaclass Statement in Figure 5 represents an abstraction
of the commands that can be executed by a given script to affect the environment, the file
system or the package settings of a given configuration (EnvironmentStatement,
FileSystemStatement, and PackageSettingStatement, respectively). For
instance, the sample package model in Figure 6 reports the scripts contained in the
package libapache-mod-php5 introduced in Section 2. Due to space constraints,
Figure 6 contains only the relevant elements of the postinst and prerm scripts which are
represented by the elements pis1 and prs1, respectively.

According to the model in Figure 6 the represented scripts update the con-
figuration of the package apache2 (see the element ps1) which depends on
libapache-mod-php5. In particular, the element upss2 corresponds to the state-
ment a2dismod which disables the PHP5 module in the Apache configuration before
removing the package libapache-mod-php5 from the filesystem. This statement
is necessary, otherwise inconsistent configurations can be reached like the one shown in
Figure 7. The figure reports the sample Configuration2which has been reached by

www.manaraa.com

272 A. Cicchetti et al.

Fig. 6. Sample Package model

Fig. 7. Incorrect package removal

removing libapache-mod-php5without changing the configuration of apache2.
Such a configuration is broken since it contains a dependency between the apache2
and libapache-mod-php5 package settings, whereas only the package apache2
is installed.

Currently, the package managers are not able to predict inconsistencies like the one
in Figure 7 since they take into account only information about package dependencies
and conflicts. The metamodel reported in Figure 5 gives the possibility to specify an
abstraction of the involved maintainer scripts which are executed during the package
upgrades. This way, consistence checking possibilities are increased and trustworthy
simulations of package upgrades can be operated.

www.manaraa.com

A Model Driven Approach to Upgrade Package-Based Software Systems 273

Fig. 8. Fragment of the Log metamodel

Fig. 9. Sample Log model

4.4 Log Metamodel

The metamodel depicted in Figure 8 is a step towards the development of a transactional
model of upgradeability that will allow us to roll-back long upgrade history, restoring
previous configurations. In particular, the metaclass Transaction in Figure 8 refers
to the set of statements which have been executed from a source configuration lead-
ing to a target one. For instance, according to the sample log model in Figure 9, the
installation of the package libapache-mod-php5 modifies the file system (see the
statement afss1 which represents the addition of the file f1) and updates the Apache
configuration (see the element upss1).

The usefulness of log models like the one in Figure 9 is manyfold and accounts for
several roll-back needs:

(a) Preference roll-back: the user wants to recover a previous configuration, for what-
ever reason. For instance, the user is not in need of PHP5 anymore and wants to re-
move the installed package libapache-mod-php5. In this case, the configuration
C1 can be recovered by executing the dual operation of each statement in the transaction

www.manaraa.com

274 A. Cicchetti et al.

between C1 and C2. Note that the log models have all the information necessary to roll-
back to any previous valid configuration not necessary a contiguous one;
(b) Compensate model incompleteness: as already discussed, upgrade simulation is not
complete with respect to upgrades, and undetected failures can be encountered while
deploying upgrades on the real system. For instance, the addition of the file php.ini
during the installation of the package libapache-mod-php5 can raise faults be-
cause of disk errors. In this case we can exploit the information stored in the log model
to retrieve the fallacious statements and to roll-back to the configuration from which the
broken transaction has started.
(c) “Live” failures: the proposed approach does not mandate to pre-simulate upgrades.
In fact, it is possible as well to avoid simulation and have metamodeling supervise up-
grades to detect invalid configurations as soon as they are reached. At that point, if
any, log models comes into play and enable rolling back deployed changes to bring the
system back to a previous valid configuration.

5 Related Works

The main difficulties related to the management of software packages depend on the
existence of maintainer scripts which can have system-wide effects, and hence can not
be narrowed to the involved packages only. In this respect, proposals like [17,18] rep-
resent a first step toward roll-back management. In fact, they support the re-creation
of removed packages on-the-fly, so that they can be re-installed to undo an upgrade.
However, such approaches can track only files which are under package manager con-
trol. Therefore, differently from us, none of such approaches can undo maintainer script
side effects.

An interesting proposal to support the upgrade of a system, called NixOS, is pre-
sented in [19]. It is a purely functional distribution meaning that all static parts of a
system (such as software packages, configuration files and system startup scripts) are
built by pure functions. Among the main limitations of NixOS there is the fact that
some actions related to upgrade deployment can not be made purely functional (e.g.,
user database management). Moreover, since NixOS implements a sort of “package
garbage collection” (package versions are not removed as long as some other package
need them) security upgrades get intrinsically more difficult due to the need of finding
all versions that need upgrades. [20] proposes an attempt to monitor the upgrade process
with the aim to discover what is actually being touched by an upgrade. Unfortunately, it
is not sufficient to know which files have been involved in the maintainer scripts execu-
tion but we have also to consider system configuration, running services etc., as taken
into account by our metamodels. Even focusing only on touched files, it is not always
possible to undo an upgrade by simply recopying the old file7. Finally, this work can be
related with techniques for static analysis of (shell) scripts. Some previous work [21]
deals with SQL injection detection for PHP scripts, but it did not consider the most
dynamic parts of the PHP language, quite common in scripting languages. Whereas,
[22] presents an “arity” bug detection in shell scripts, but once more only considers a
tiny fragment of the shell language. Both works hence are far even from the minimal

7 This argument goes far beyond the scope of this work. For more information see [5].

www.manaraa.com

A Model Driven Approach to Upgrade Package-Based Software Systems 275

requirement of determining a priori the set of files touched by script execution, letting
aside how restricted were the considered shell language subsets. Given these premises,
we are skeptical that static analysis can fully solve the problem illustrated in our work.

6 Conclusions and Future Works

In this paper we presented a model-driven approach to manage the upgrade of FOSS
distributions and similarly structured complex, package based software systems. This
approach represents an important advance with respect to the state of the art in the fol-
lowing directions: it provides the base on which developing features to (i) complete
resolve packages dependencies, (ii) support the roll-back of failed or unwanted up-
grades, and (iii) simulate the execution of maintainer scripts that we described in terms
of models. A running example showed how the proposed models allow a reasonable
description of the state of the system and representation of its evolution over time.

As future work we plan to implement these results and to develop a transactional
update engine in the real context of Debian and Mandriva distributions. Moreover, the
metamodels proposed in this paper will be the foundation to define a new Domain
Specific Language (DSL) for maintainer script specifications.

Acknowledgements. This work is partially supported by they European Community’s
7th Framework Programme (FP7/2007–2013), http://www.mancoosi.org MANCOOSI

project, grant agreement n◦214898.

References

1. Cicchetti, A., Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Towards a model
driven approach to upgrade complex software systems. In: Proceedings of ENASE (2009)

2. Spinellis, D., Szyperski, C.: How is open source affecting software development. IEEE Com-
puter 21(1), 28–33 (2004)

3. Szyperski, C.: Component Software. Beyond Object-Oriented Programming. Addison-
Wesley, Reading (1998)

4. Szyperski, C.: Component technology: what, where, and how? In: Proceedings of ICSE 2003.
ACM, New York (2003)

5. Di Cosmo, R., Zacchiroli, S., Trezentos, P.: Package upgrades in FOSS distributions: details
and challenges. In: HotSWUp 2008, pp. 1–5. ACM, New York (2008)

6. EDOS Project: Report on formal management of software dependencies. EDOS Project De-
liverable D2.1 and D2.2 (March 2006)

7. Jackson, I., Schwarz, C.: Debian policy manual (2008),
http://www.debian.org/doc/debian-policy/

8. Mancinelli, F., Boender, J., Cosmo, R.D., Vouillon, J., Durak, B., Leroy, X., Treinen, R.:
Managing the complexity of large free and open source package-based software distributions.
In: ASE 2006, Tokyo, Japan, September 2006, pp. 199–208. IEEE CS Press, Los Alamitos
(2006)

9. Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: Opium: Optimal package install/uninstall
manager. In: ICSE 2007, pp. 178–188. IEEE Computer Society, Los Alamitos (2007)

10. Mens, T., Straeten, R.V.D., D’Hondt, M.: Detecting and resolving model inconsistencies
using transformation dependency analysis. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200–214. Springer, Heidelberg (2006)

http://www.debian.org/doc/debian-policy/

www.manaraa.com

276 A. Cicchetti et al.

11. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing model conflicts in distributed devel-
opment. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg (2008)

12. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. IEEE Com-
puter 39(2), 25–31 (2006)

13. Bézivin, J.: On the Unification Power of Models. SOSYM 4(2), 171–188 (2005)
14. Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Towards maintainer script mod-

ernization in foss distributions. In: IWOCE 2009, pp. 11–20. ACM, New York (2009)
15. Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Metamodel for describing sys-

tem structure and state. Mancoosi Project deliverable D2.1 (January 2009),
http://www.mancoosi.org/deliverables/d2.1.pdf

16. Dolstra, E., Hemel, A.: Purely functional system configuration management. In:
USENIX 2007, San Diego, CA, pp. 1–6 (2007)

17. Olin Oden, J.: Transactions and rollback with rpm. Linux Journal 121, 1 (2004)
18. Trezentos, P., Di Cosmo, R., Lauriere, S., Morgado, M., Abecasis, J., Mancinelli, F., Oliveira,

A.: New Generation of Linux Meta-installers. In: Research Track of FOSDEM (2007)
19. Dolstra, E., Löh, A.: NixOS: A purely functional linux distribution. In: ICFP (2008) (to

appear)
20. McQueen, R.: Creating, reverting & manipulating filesystem changesets on Linux. Part II

Dissertation, Computer Laboratory, University of Cambridge (May 2005)
21. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages. In:

USENIX-SS 2006, pp. 179–192 (2006)
22. Mazurak, K., Zdancewic, S.: Abash: finding bugs in bash scripts. In: PLAS 2007, pp. 105–

114. ACM, New York (2007)

http://www.mancoosi.org/deliverables/d2.1.pdf

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 277–290, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Coupling Metrics for Aspect-Oriented Programming:
A Systematic Review of Maintainability Studies

Rachel Burrows1, Alessandro Garcia2, and François Taïani1

1 Computing Department, Lancaster University, U.K.
{rachel.burrows,francois.taiani}@comp.lancs.ac.uk

2 Informatics Department, Pontifical Catholic University of Rio de Janeiro, Brazil
afgarcia@inf.puc-rio.br

Abstract. Over the last few years, a growing number of studies have explored
how Aspect-Oriented Programming (AOP) might impact software maintainabil-
ity. Most of the studies use coupling metrics to assess the impact of AOP
mechanisms on maintainability attributes such as design stability. Unfortu-
nately, the use of such metrics is fraught with dangers, which have so far not
been thoroughly investigated. To clarify this problem, this paper presents a sys-
tematic review of recent AOP maintainability studies. We look at attributes
most frequently used as indicators of maintainability in current aspect-oriented
(AO) programs; we investigate whether coupling metrics are an effective surro-
gate to measure theses attributes; we study the extent to which AOP abstrac-
tions and mechanisms are covered by used coupling metrics; and we analyse
whether AO coupling metrics meet popular theoretical validation criteria. Our
review consolidates data from recent research results, highlights circumstances
when the applied coupling measures are suitable to AO programs and draws at-
tention to deficiencies where coupling metrics need to be improved.

Keywords: Coupling, Aspect-oriented programming, Systematic review,
Maintainability.

1 Introduction

Aspect-oriented programming (AOP)[2] is now well established in both academic and
industrial circles, and is increasingly being adopted by designers of mainstream imple-
mentation frameworks (e.g. JBoss and Spring). AOP aims at improving the modularity
and maintainability of crosscutting concerns (e.g. security, exception handling, caching)
in complex software systems. It does so by allowing programmers to factor out these
concerns into well-modularised entities (e.g. aspects and advices) that are then woven
into the rest of the system using a range of composition mechanisms, from pointcuts and
advices, to inter-type declarations[27], and aspect collaboration interfaces[8].

Unfortunately, and in spite of AOP’s claims to modularity, it is widely acknowl-
edged that AOP mechanisms introduce new intricate forms of coupling[33], which in
turn might jeopardise maintainability[1,4]. To explore this, a growing number of
exploratory studies have recently investigated how maintainability might be impacted
by the new forms of coupling introduced by AOP mechanisms[e.g 19,20,26].

www.manaraa.com

278 R. Burrows, A. Garcia, and F. Taïani

The metrics used by these studies are typically taken from the litera-
ture[10,11,33,37,39] and are assumed to effectively capture coupling phenomenon in
AOP software. However, the use of coupling metrics is fraught with dangers, which
as far as AOP maintainability is concerned have not yet been thoroughly investigated.
In order to measure coupling effectively a metrics suite should fulfill a number of key
requirements. For instance: the suite should take into account all the composition
mechanisms offered by the targeted paradigm[29,31]; the metrics definitions should
be formalised according to well-accepted validation frameworks, e.g. Kitchenham’s
validation framework[30]; and they should take into account important coupling di-
mensions, such as coupling type or strength. If these criteria are not fully satisfied,
maintainability studies of AOP might draw artificial or inaccurate conclusion and,
worse, might mislead programmers about the potential benefits and dangers of AOP
mechanisms regarding software maintenance.

Unfortunately, the validity and reliability of coupling metrics as indicators of main-
tainability in AOP systems remains predominantly untested. In particular, there has
been no systematic review on the use of coupling metrics in AOP maintainability
studies. Inspired from medical research, a systematic review is a fundamental empiri-
cal instrument based on a literature analysis that seeks to identify flaws and research
gaps in existing work by focusing on explicit research questions[29]. This paper pro-
poses such a systematic review with the aim to pinpoint situations where existing
coupling metrics have been (or not) effective as surrogate measures for key maintain-
ability attributes. Our systematic review consolidates data from a range of relavent
AOP studies, highlights circumstances when the applied coupling measures are suit-
able to AO programs and draws attention to deficiencies where coupling metrics
needs to be improved.

The remainder of this paper provides some background on AOP and coupling
measurement (Section 2). We then discuss the design of our systematic review and
present its results (Section 3 and 4). Finally, we discuss our findings (Sections 5) and
conclude (Section 6).

2 AOP and Coupling Measurement

This section gives a brief discussion on three representative AOP languages and also
gives a background on coupling metrics for AOP.

2.1 AOP Languages and Constructs

One of the reasons why the impact of AOP on maintainability is difficult to study per-
tains to the inherent heterogeneity of aspect-oriented mechanisms and languages.
Different AOP languages tend to incarnate distinct blends of AOP and use different
encapsulation and composition mechanisms. They might also borrow abstractions and
composition mechanisms from other programming paradigms, such as collaboration
languages (CaesarJ), feature-oriented programming (CaesarJ), and subject-oriented
programming (HyperJ). Most AOP languages tend to encompass conventional AOP
properties such as joinpoint models, advice and aspects, or their equivalent, but each
possesses unique features that make cross-language assessment difficult.

www.manaraa.com

 Coupling Metrics for AOP: A Systematic Review of Maintainability Studies 279

Table 1. AO abstractions and mechanisms unique to three main AOP languages

AO Language Abstraction / Mechanism
Intertype Declaration
Dynamic Pointcut Designators
Aspect
Aspect Collaboration Interface
Weavlet
Virtual Class
Hyperspace
Concern Mapping
Hypermodule
Composition Relationship

HyperJ

CaesarJ

AspectJ

Table 1 lists ten such features for AspectJ[2], HyperJ[23] and CaesarJ[8], three of
the most popular AOP languages. For instance, AspectJ supports advanced dynamic
pointcut designators, such as “cflow”. HyperJ uses hyperspace modules to modularise
crosscutting behaviour as well as non-crosscutting behaviour. HyperJ thus does not
distinguish explicitly between aspects and classes in the way AspectJ does. Other
abstractions unique to HyperJ include Compositions Relationships. These use merge-
like operators to define how surrounding modules should be assembled. Finally, Cae-
sarJ supports the use of virtual classes to implement a more pluggable crosscutting
behaviour. This pluggable behaviour is connected with the base code through Aspect
Collaboration Interfaces.

2.2 Existing AO Coupling Metrics

Coupling metrics aim to measure the level of interdependency between modules
within a program[12], thus assessing a code’s modularisation, and indirectly main-
tainability. Unfortunately, each language’s unique features introduce new forms of
coupling, which cannot always readily be mapped onto existing concepts (Table 1).
This creates a challenge when designing coupling metrics for AOP, as these metrics
should ideally take into account each language’s unique features, while still providing
a fair basis for comparison multiple AOP languages. This is particularly difficult.

A number of coupling metrics have so far been proposed for AO programs. Some
are adapted from object-orientation, and transposed to account for AO mechanisms.
For instance, both Ceccato and Tonella[10] and Sant’Anna et al[36] have proposed
coupling metrics adapted from an object-oriented (OO) metrics suite by Chidamber
and Kemerer [11]. These metrics can be applied to both OO and AO programs. This is
especially useful in empirical studies that perform aspect-aware refactoring. Unfortu-
nately, because these metrics are not specific to AOP, they might overlook the unique
intricate forms of coupling described in Table 1.

Zhao[39] uses dependency graphs to measure some AO mechanisms that are not
measured individually in either Ceccato and Tonella or Sant’Anna’s suites. Zhao’s
suite contains metrics that measure coupling sourced from AO abstractions and
mechanisms independently of OO abstractions and mechanisms.

www.manaraa.com

280 R. Burrows, A. Garcia, and F. Taïani

Coupling metrics are however rarely used as a direct representation of maintain-
ability, but instead are typically contrasted against a particular maintainability attrib-
ute, such as code stability. The choice of this attribute (or attributes) might in turn
influence which coupling metrics is the most suitable.

3 Systematic Review

This section describes the objectives and questions (Section 3.1) as well as the strate-
gical steps carried out in the systematic review.

3.1 Objectives and Questions

The aim of our systematic review is to analyse the effectiveness of coupling metrics
in existing AO empirical studies as a predictor of maintainability, and in particular
focus on the following four research questions:

a) Which external attributes are most frequently used to indicate maintainability in
current AO programs?

b) Are used coupling metrics effective surrogate measures for software maintainability?
c) Are all AOP abstractions and mechanisms covered in the design of the used cou-

pling metrics?
d) Do AO coupling metrics meet well-established theoretical validation criteria?

3.2 Review Strategy

Searches for papers took place in 14 renowned online journal banks or were those
published in recognised conference papers such as AOSD(Aspect-Oriented Software
Development) and ECOOP (European Conference on Object-Oriented Programming).
We gave priorities to publications in conferences with an acceptance rate below 30%.
Relavent papers were found from ACM, SpringerLink, IEEE, Google Scholar, Lan-
caster University Online Library, and two were collected from other sources.

Sampling Criteria. From this base we sampled papers that met the following criteria.
Each selected paper had to:

• use an empirical study to measure maintainability attributes in AOP;
• and use coupling metrics within the study.

Due to low retrieval rate from journal banks, alternative approaches were also
used. This included both consulting references on already-found papers and searching
specifically for papers we knew met our criteria (from previous knowledge). The
distribution of collected research is recorded in the review results (Section 4).

Exracted Data. We recorded which independent / dependent variables where
measured, the goals of measurement, the type of study, measurement results, which
coupling metrics were used, their origin, and whether the applied metrics were spe-
cifically for AOP or adapted from another programming technique (e.g. OOP).

www.manaraa.com

 Coupling Metrics for AOP: A Systematic Review of Maintainability Studies 281

Table 2. Distribution of Studies

Electronic Journal # Retrieved # Rejected # Used
ACM 4 0 4
IEEE 2 1 1
SpringerLink 3 1 2
L.U. Online Library 5 2 3
Other 4 2 2
Total 18 6 12

4 Results

A final set of 12 papers was finally obtained (Table 2), which is a typical sample size
for systematic reviews in software engineering[28].

4.1 Assessed Maintainability Attributes

It is difficult to select coupling metrics to assess maintainability as definitions are
often open to interpretations. For instance in[24], maintainability is “the ease with
which a software system or component can be modified to correct faults, improve
performance, or other attributes, or adapt to a changed environment”.

There is also no consensus about the external and internal attributes are the most
significant indicators of maintainability. This is apparent in the empirical studies from
the diverse selection of metrics used. Two main processes were recorded to select
suitable coupling metrics. Firstly, many studies used coupling metrics previously
selected in similar AOP empirical studies. Secondly, results showed the Goal-
Question-Metric (GQM) [6] style approach is a common technique used to select
appropriate metrics in empirical studies. This approach guides researchers to: (i) de-
fine the goal of measuring maintainability, then (ii) derive external attributes that are
possible indicators of maintainability, then (iii) derive from these a set of internal
measurable attributes, and finally (iv) derive a set of metrics to measure the internal
measurable attributes. Unfortunately, using GQM still leaves a large degree of inter-
pretation to its users, who might independently reach divergent conclusions. One
further problem with this uncertainty is that the metric selection process can become
circular, especially when measuring maintainability, as external quality attributes are
interconnected. For instance, stability indicates maintainability, yet maintainability
can be seen as an indicator of stability.

Similar techniques for selecting appropriate metrics in empirical studies have been
used in [33]. This study decided to measure attributes such as maintainability, reus-
ability and reliability as indicators of maintainability. From this list, internal attributes
such as separation of concerns, coupling, complexity, cohesion and size were se-
lected. The final set of selected coupling metrics was then defined based upon these
internal attributes. We can therefore see that uncertainty on key external attributes has
great impact on the remainder of the metric selection process.

This lack of conformity on these attributes has unsurprisingly affected the selected
coupling metrics. For instance, maintainability is measured in studies[7,15,17]

www.manaraa.com

282 R. Burrows, A. Garcia, and F. Taïani

through the application of 9 metrics to measure size, coupling, cohesion and separa-
tion of concerns metrics. In[10,33] complexity is in addition derived as an external
attribute contributing to maintainability. We return to this topic in Section 5.

Similar problems have been observed in maintainability studies of object-oriented
programming (OOP) this has been highlighted in a survey of existing OO empirical
studies and their methodologies to predict external quality attributes[5].

Many studies acknowledge that modularity, coupling, cohesion and complexity are
internal attributes that affect maintainability. Interestingly, error-proneness was the
attribute that was not explicitly derived as an indicator of maintainability.

In short, different interpretations of maintainability and its subsequent derived at-
tributes influence the coupling metrics chosen or defined within the context of an
empirical study. This may explain the wide range of coupling metrics observed in
AOP empirical studies, which we review in the next subsections.

4.2 Coupling Metrics Used to Measure Maintainability

We identified 27 coupling metrics in our sample set of studies. A representative sub-
set of these metrics is shown in Table 3. For each metric, the table lists it’s name,
description, and six characteristics.

Generally, the most frequent metrics were adapted from object orientation (OO).
Among them, the most common were Coupling Between Components (CBC) and
Depth of Inheritance Tree (DIT), appearing in 66% of the studies. Adapted metrics
hold the advantage of being based upon OO metrics that are widely used, and can be
assumed reliable. The (implicit) reasoning is that adapting OO metrics to AOP main-
tains their usefulness. This however might no hold: DIT for instance combines both
the implicit AO inheritance with the traditional OO inheritance. It thus considers two
very different coupling sources together. These sources may have different affects
upon maintainability and it may be beneficial to consider these seperately.

In contrast, some of the studies also use coupling metrics developed for AOP, such
as Coupling on Advice Execution (CAE) and Number of degree Diffusion Pointcuts
(dPC). These metrics enable a more in-depth analysis of the system coupling behav-
iour, as they consider finer-grained langauge constructs. However, they are more
likely to behave unexpectedly, being underdeveloped.

No AO coupling metrics were found to be interchangeable, i.e. none were found to
be applicable to different AO languages without any ambiguity. This is probably due
to the heterogeneity of AO programming abstractions and mechanisms that makes it
very hard to define metrics accurately across multiple AO languages.

The majority of metrics found in our study assess outgoing coupling connections
(indicated as “Fan Out” in Table 3). This can be seen as a weakness, as both incoming
and outgoing coupling connections help refactoring decisions, as discussed in[31].

4.3 Measured AOP Mechanisms

OO coupling metrics can be adapted to take into account AO mechanisms, producing
a seemingly equivalent measure. However, this approach might miss some of specific
needs of AO programs. We now review how the mechanisms of the AOP languages
most commonly used in maintainability studies of AOP were accounted for in cou-
pling measures, and draw attention to mechanisms that are frequently overlooked.

www.manaraa.com

 Coupling Metrics for AOP: A Systematic Review of Maintainability Studies 283

Table 3. Properties of used coupling metrics

Metric Description

(DIT) Depth of Inheritance
Tree [10]

Longest path from class / aspect to hierarchial root.

(RFM) Response for a
Module [10]

Methods and advices potentially executed in response to a
message received by a given module.

(NOC) No. of Children [10] Immediate sub-classes / aspects of a module.
(CBC) Coupling Between
Components [10]

Number of classes / aspects to which a class / aspect is
coupled.

(CAE) Coupling on Advice
Execution [10]

No. of aspects containing advice possibly triggered by
execution of operations in a given module.

(dPC) No. of Degree
Diffusion Pointcuts [31]

No. of modules depending on pointcuts defined in the module.

(InC) No. of In-Different
Concerns [31]

No. of different concerns to which a module is participating.

Metric
Measurement
Granularity

Measurement
Entity

Measurement
Type

Fan In /
Fan Out

Inter-
changeable

AO /
Adapted

(DIT) class / aspect Class / aspect inheritance n/a no adapted

(RFM) module method / advice environmental fan out no adapted

(NOC) module Class / aspect inheritance n/a no adapted

(CBC) class / aspect Class / aspect environmental fan out no adapted

(CAE) module aspect environmental fan out no AO

(dPC) module module environmental fan in no AO

(InC) module concern environmental n/a no AO

Table 4 lists the mechanisms and abstractions used in the coupling metrics of our
study. One first challenge arises from the ambiguity of many notions. For instance,
seven metrics use “modules” as their level of granularity, but what is module might
vary across languages. In AspectJ an aspect may be considered a module – containing
advice, pointcuts and intertype declarations, yet in CaesarJ, each advice forms its own
module. More generally, many coupling metrics use ambiguously terms (“module”,
“concern”, or “component”) which might be mapped to widely varying constructs in
different languages. This hampers the ability of the metrics to draw cross-language
comparisons[20].

Another challenge comes from the fact that certain phenomenon are best analysed
by looking at the base and aspect codes separately. For instance, as a program
evolves, it may lose its original structure. However, in AO programs, the base level
and aspect level often evolve independently and have different structures. Under-
standing how each evolution impacts structure thus requires that each be investigated
separately. This is not done in most of the empirical studies we found.

We also noted that the majority of used AO metric suites did not focus on interface
complexity. This is a problem as AO systems are at risk of creating complex inter-
faces by extracting code which is heavily dependent on the surrounding base code,
and metrics are needed to identify problematic situations[33].

www.manaraa.com

284 R. Burrows, A. Garcia, and F. Taïani

Table 4. AO mechanisms and abstractions accounted for in used coupling metrics

Abstraction /
Mechanism

No. of
Metrics

Measurement
Entity

Measurement
Granularity

Singular
Entity Metric

Module 15 8 12 5
Component 1 0 0 0
Concern 7 5 7 2
Pointcut 3 0 0 0
Joinpoint 2 2 0 2
Intertype Declaration 1 1 0 0
Aspect 7 4 4 1
Advice 3 1 0 0

More generally, few studies look at the connection between maintainability and
specific AO mechanisms. For instance Response for a Module (RFM) measures con-
nections from a module to methods / advices. This is useful in analysing coupling on
a “per module” basis, but does not distinguish between individual AO language con-
structs. For instance, it adds up intertype declarations jointly with advice as they both
provide functionality that insert extra code into the normal execution flow of the sys-
tem. However intertype declarations differ from other types of advice as they inject
new members (e.g. attributes) into the base code. Coupling metrics have been pro-
posed to address this problem and measure singular mechanisms, such as advice,
pointcuts, joinpoints and some intertype declarations[10,26,36], but have rarely been
used in maintainability studies.

To sum up, no study used metrics to measure constructs unique to AO program-
ming languages, and very few measured finer-grained language constructs. Although
this depends on the particular goals of each maintainability study, this is generally
problematic as each mechanism within a particular language has the potential to affect
maintainability differently, and should therefore be analysed in its own right.

4.4 Validation of Coupling Metrics

Metrics are useful indicators only if they have been validated. There are two comple-
mentary approaches to validate software metrics, empirical validation and theoretical
validation[30]. We will focus on the latter. In our context, theoretical validation tests
that a coupling metric is accurately measuring coupling and there is evidence that the
metric can be an indirect measure of maintainability.

Here we consider the 8 validity properties suggested by Kitchenham[30]. The theo-
retical criteria are split into two categories: (i) properties to be addressed by all met-
rics; and (ii) properties to be satisfied by metrics used as indirect measures. [3] has
already used the first criteria on coupling metrics for AO programs. We offer some
alternative viewpoints here, and also evaluate the coupling metrics against properties
that indirect measures should possess. When we applied this framework to the 27
coupling metrics found in our review, we identified three potential violations of these
criteria, discussed below.

www.manaraa.com

 Coupling Metrics for AOP: A Systematic Review of Maintainability Studies 285

A Valid Measure Must Obey the ‘Representation Condition’. This criterion states
that there should be a homomorphism between the numerical relation system and the
measureable entities. In other words a coupling metric should accurately express the
relationship between the parts of the system that it claims to measure. It also implies
that coupling metrics should be intuitive of our understanding of program cou-
pling[30]. For instance, a program with a CBC value of 6 should be more coupled
than a program with a CBC value of 5. This metric holds true to it’s definition,
however if a study is using CBC as a representation of coupling within a system this
validation criteria becomes questionable. When measuring coupling we often do not
perceive each connection as equal. There are different types and strengths of cou-
pling. If we consider two AO systems; the first with 5 coupling connections via inter-
type declarations, and the second with 5 coupling connections via advice. Even
though both systems contain 5 coupling connections, they are not equivalent, and are
not equally interdependent. Various sources and types of coupling may influence the
interdependency of a system in multiple ways. We found no metrics in the studies that
took this finer differences into account.

Each Unit of an Attribute Contributing to a Valid Measure is Equivalent. We are
assuming that units (modules) that are measured alongside each other are equivalent.
There are some AO coupling metrics that only consider coupling from one language
‘unit’. For example, the CAE metric satisfies this property as each connection counted
by metric value involves an advice method. However, many metrics used in empirical
studies of AOP assume that counting coupling connections between AO modules is
equivalent to coupling connections between OO modules. As mentioned b, classes
and aspects are often measured together as equivalent modules (e.g in DIT), yet we do
not have evidence that they have the same effect upon maintainability, thus violating
this criteria.

There should be an Underlying Model to Justify its Construction. To give good
reason for the creation of coupling metrics, there should be underlying evidence that
the metric will be an effective indicator of maintainability. Unfortunately, this crite-
rion definition is somewhat circular in the case of maintainability; metrics are often
already constructed and applied before supporting this underlying theory and justify-
ing their construction. In OOP it is widely accepted that there is a relationship
between coupling and external quality attributes. Because AOP and OOP share simi-
larities, we could infer that metrics that measure a specific form of coupling in OOP
hold a similar potential when adapted to AOP (such as DIT, CBC). This however
needs to be validated. This need is even more acute for metrics specific to AOP (e.g.
CAE), as we have less information on how coupling induced by AOP-specific
mechanisms correlate with maintainability.

5 Discussion

We first discuss the potential threats to the validity of our study (5.1), and then revisit
our original research questions (5.2) in the light of the results we have just discussed.

www.manaraa.com

286 R. Burrows, A. Garcia, and F. Taïani

5.1 Threats to Validity

Our study raises both internal and external validity issues. In terms of internal valid-
ity, our study is based on 12 papers that matched our criteria (Section 4). This number
is not high however this is in line with systematic reviews in software engineering,
which often rely on approximately 10 target papers[28]. The size of the sample should
however be kept in mind when assessing the generality of our results.

In terms of external validity, we identified a number strengths and liabilities in the
state-of-the-art of AO coupling metrics. However, this list is certainly not exhaustive,
and does no cover a number of broader issues about AO metrics and maintainability.

For instance, there are certain forms of (semantic) module dependencies that can-
not be quantified by conventional coupling metrics, such as those captured by net-
work analysis[40]. The same argument applies to Net Option Values and Design
Structure Matrices[9,32]. Finally, AO empirical studies often rely on multiple metrics
suites to measure module complexity, module cohesion, and concern properties. Con-
sidering coupling in isolation thus limits our horizon, a broader review would be
complementary to this work.

5.2 Analysis and Implications

The design and use of AO coupling metrics needs to be improved. Analysis of find-
ings revealed problems corresponding to each of the four original research questions.

The selection of metrics to measure maintainability in AO studies is ambiguous.
Many issues contribute to this. Some studies specified key external attributes that
contribute to the maintainability of a program. The subjectivity and variations of these
external attributes(Section 4.1) causes uncertainty of the most effective metrics to
select to measure them. Also, deriving attributes that influence maintainability has
shown to be a circular process e.g. stability affects maintainability, and maintainabil-
ity affect stability. Empirical validation may aid researchers to converge on a smaller
set of validated coupling metrics. Better-defined metrics will help this process as well
(Section 4.4).

Adapted OO metrics are useful to cross-compare AO and OO programs. Naturally,
OO coupling metrics that successfully served as valid indicators of maintainability are
likely to be re-used. In fact, this assumption applies to many studies that refactor OO
programs with aspects. However, it is important that adapted metrics are not the only
ones used. Adapted metrics (such as CBC) overlook characteristics that are unique to
a particular AOP language as discussed in Section 4.3. For instance, this metric can-
not be used to pinpoint the coupling caused by particular AOP constructs, yet specific
AOP constructs may impact unexpectedly upon the maintainability of a program.
Also, coupling introduced by unique AOP constructs should be also measured as
single entities. Otherwise, we are unable to gain in-depth knowledge about the impact
of AOP on maintainability.

Some AO metrics provide initial means to measure coupling introduced by specific
AO language constructs[10,33,39]. These fine-grained metrics make it easier to locate
program elements that are responsible for positive (or negative) results. For example,
if we can correlate a high CAE coupling value with poor maintainability, we may
infer that specific advice types in AOP languages are harmful.

www.manaraa.com

 Coupling Metrics for AOP: A Systematic Review of Maintainability Studies 287

Also, results from fine-grained AO coupling metrics may facilitate the identifica-
tion of solutions for classical problems in AOP, such as pointcut fragility [26].
Pointcut fragility is the phenomenon associated with instabilities observed in poincut
specifications in the presence of changes. It is commonly assumed the syntax-based
nature of most pointcut designators is the cause of their fragilities [26]. There are
speculations that certain pointcut designators, such as cflow (Section 2.1), cause more
instability. These hypotheses re-enforce the need for metrics that quantify specialised
types of coupling links between aspectual code and base code. Such envisaged fine-
grained metrics would enable us to better understand the effects of particular AOP
mechanisms upon maintainability. We need to know which specific mechanisms are
typically the cause of high coupling, and does coupling via different mechanisms have
the same impact upon maintainability.

There are other important dimensions of coupling beyond granularity, such as di-
rection, or strength of coupling [4]. We identified that the analysed 27 metrics for
AOP do overlook important coupling dimensions. This might be misleading conclu-
sions, as different coupling dimensions may affect maintainability in different ways.

Most AO coupling metrics are created with AspectJ as the target lan-
guage[10,33,36]. However, alternative languages, such as HyperJ and CaesarJ, sup-
port AOP based on different mechanisms (Table 1). Section 4.3 discussed the need for
coupling metrics tailored to these unique mechanisms of alternative AOP languages.
It is also required to define coupling metrics that are interchangeable across these
multiple AOP languages.

Not all coupling metrics meet popular validation criteria (Section4.4). Without
theoretical validation there is the risk of using metrics that are providing inaccurate
results. Even subtle adaptations to widely accepted OO metrics need to be validated.
A recurring point in this review was that certain metric definitions assume different
language constructs can be measured together as equivalent entities. For instance,
coupling via class inheritance in OO programs might not demonstrate equivalent
maintainability effects as aspect inheritance in AO programs. Similar effects might
also be overlooked in other forms of module specialisations in AOP, such as intertype
declarations. Therefore it might not be appropriate to quantify together heterogeneous
specialisation forms in AOP.

Liabilities of AO coupling metrics are not restricted to unsatisfactory theoretical vali-
dation. Their empirical validation is also limited, and the statistical relevance of cou-
pling metrics’ results is compromised. For example, metrics adapted from OOP remain
invalidated within the context of AOP. It would be wrong to assume that such adapted
metrics can be similarly interpreted in the context of AO software maintainability.

6 Conclusions

Conducting the systematic review has presented valuable insights into current trends on
coupling measurement for AOP. This has consequently highlighted the need for fine-
grained metrics that consider specific AOP constructs. Existing metrics that are fre-
quently used are therefore in danger of overlooking key contributors to maintainability.

For this reason, there is a niche in current maintainability studies of AOP to use
coupling metrics that: (i) take specific language constructs into account, (ii) distinguish

www.manaraa.com

288 R. Burrows, A. Garcia, and F. Taïani

between the various dimensions of coupling, and (iii) can be applied unambiguously to
a variety of AOP languages.

We have also noticed that the maintainability studies of AOP overly concentrate on
static coupling metrics. Dynamic coupling metrics [1] for AOP have not been applied
in all the analysed studies. This came as a surprise as many AO composition mecha-
nisms rely on the behavioural program semantics. Also, key maintainability attributes,
such as error proneness (Section 4.1), are never explicitly derived as an assessment
goal.

Validating new metrics is a non-trivial matter. Kitchenham raised the problem that
validating metrics solely with predictive models can be problematic [29]. Without
theoretical validation, metrics might not be suitable indirect measures of maintainabil-
ity. It is important to consider the context that a metric is being applied and whether it
is an accurate representation of maintainability in AO systems. Therefore, even AO
metrics adapted from empirically-validated OO metrics, can fail to be theoretically
sound predictors of maintainability. In fact, our systematic review found that some
AO metrics do not obey the representation condition and other criteria.

However, the above goals are difficult to address in one approach. For instance, de-
fining fine-grained metrics to analyse language specific mechanisms is conflicting
with the goal of having course-grained metrics that can be applied across multiple
AOP languages. Unfortunately, all these goals are crucial for an in-depth comparison
of AOP mechanisms. As part of our future works we aim to undertake empirical stud-
ies to explore how the goals we have identified may be reconciled in a unified
approach.

References

1. Arisholm, E., Briand, L., Foyen, A.: Dynamic Coupling Measurement for Object-Oriented
Software. IEEE Trans. Soft. Eng. 30(8), 491–506 (2004)

2. The AspectJ Prog. Guide, http://eclipse.org/aspectj
3. Bartsch, M., Harrison, R.: An Evaluation of Coupling Measures for AOP. In: LATE

Workshop AOSD (2006)
4. Briand, L., Daly, J., Wüst, J.: A Unified Framework for Coupling Measurement in Object-

Oriented Systems. IEEE Trans. Software Eng. 25(1), 91–121 (1999)
5. Briand, L., Wüst, J.: Empirical Studies of Quality Models in Object-Oriented Systems. In:

Advances in Computers. Academic Press, London (2002)
6. Basili, V., et al.: GQM Paradigm. Comp. Encyclopedia of Soft. Eng. JW&S 1, 528–532

(1994)
7. Cacho, N., et al.: Composing design patterns: a scalability study of aspect-oriented pro-

gramming. In: AOSD 2006, pp. 109–121 (2006)
8. CaesarJ homepage, http://caesarj.org
9. Cai, Y., Sullivan, K.J.: Modularity Analysis of Logical Design Models. ASE 21, 91–102

(2006)
10. Ceccato, M., Tonella, P.: Measuring the Effects of Software Aspectization. WARE cd-rom

(2004)
11. Chidamber, S., Kemerer, C.: A Metrics Suite for OO Design. IEEE Trans. Soft.

Eng. 20(6), 476–493 (1994)

www.manaraa.com

 Coupling Metrics for AOP: A Systematic Review of Maintainability Studies 289

12. Fenton, N.E., Pfleeger, S.L.: Software Metrics: a Rigorous and Practical Approach, 2nd
edn. PWS Publishing Co., Boston (1998)

13. Figueiredo, E., et al.: Assessing Aspect-Oriented Artifacts: Towards a Tool-Supported
Quantitative Method. In: ECOOP (2005)

14. Filho, F.C., et al.: Exceptions and aspects: the devil is in the details. FSE 14, 152–156
(2006)

15. Filho, F.C., Garcia, A., Rubira, C.M.F.: A quantitative study on the aspectization of excep-
tion handling. In: Proc. ECOOP (2005)

16. Garcia, A., et al.: On the modular representation of architectural aspects. In: Gruhn, V.,
Oquendo, F., et al. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 82–97. Springer, Heidelberg
(2006)

17. Garcia, A., et al.: Separation of Concerns in Multi-Agent Systems: An Empirical Study.
Software Engineering for Multi-Agent Systems with Aspects and Patterns. J. Brazilian
Comp. Soc. 1(8), 57–72 (2004)

18. Garcia, A., et al.: Aspectizing Multi-Agent Systems: From Architecture to Implementation.
In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.) SELMAS 2004. LNCS,
vol. 3390, pp. 121–143. Springer, Heidelberg (2005)

19. Garcia, A., et al.: Modularizing Design Patterns with Aspects: A Quantitative Study. In:
Proc. AOSD, pp. 3–14 (2005)

20. Greenwood, P., et al.: On the Impact of Aspectual Decompositions on Design Stability: An
Empirical Study. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 176–200.
Springer, Heidelberg (2007)

21. Harrison, R., Counsell, S., Nithi., R.: An Overview of Object-Oriented Design Metrics. In:
Proc. STEP, pp. 230–234 (1997)

22. Hitz, M., Montezeri, B.: Measuring Coupling and Cohesion in Object-Oriented Systems.
In: Proc. Int. Symposium on Applied Corporate Computing (1995)

23. Hyper/J home page,
http://www.research.ibm.com/hyperspace/HyperJ.htm

24. IEEE Glossaries,
http://www.computer.org/portal/site/seportal/index.jsp

25. JBoss AOP, http://labs.jboss.com/jbossaop
26. Kastner, C., Apel, S., Batory, D.: Case Study Implementing Features Using AspectJ. In:

Proc. SPLC, pp. 223–232 (2007)
27. Kiczales, G., et al.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S., et al.

(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)
28. Kitchenham, B., et al.: Systematic Literature Reviews in Software Engineering – A Sys-

tematic Literature Review. Information and Software Technology (2008)
29. Kitchenham, B.: Procedures for Performing Systematic Reviews. Joint Tech. Rep. S.E.G.

(2004)
30. Kitchenham, B., Pfleeger, S.L., Fenton, N.: Towards a Framework for Software Validation

Measures. IEEE TSE 21(12), 929–944 (1995)
31. Kulesza, U., et al.: Quantifying the Effects of Aspect-Oriented Programming: A Mainte-

nance Study. In: Proc. ICSM, pp. 223–233 (2006)
32. Lopes, C.V., Bajracharya, S.K.: An analysis of modularity in aspect oriented design. In:

AOSD, pp. 15–26 (2005)
33. Marchetto, A.: A Concerns-based Metrics Suite for Web Applications. INFOCOMP jour-

nal of computer science 4(3) (2004)
34. Pressman, R.S.: Software Engineering: a Practitioner’s Approach. McGraw Hill, NY

(1987)

www.manaraa.com

290 R. Burrows, A. Garcia, and F. Taïani

35. Sant’Anna, C., et al.: On the Modularity of Software Architectures: A Concern-Driven
Measurement Framework. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 207–
224. Springer, Heidelberg (2007)

36. Sant’Anna, C., et al.: On the Reuse and Maintenance of Aspect-Oriented Software: An As-
sessment Framework. In: Proc. SBES, pp. 19–34 (2003)

37. Sant’Anna, C., et al.: On the Modularity of Software Architectures: A Concern-Driven
Measurement Framework. In: Proc. ECSA (2008)

38. Spring AOP, http://www.springframework.org
39. Zhao, J.: Measuring Coupling in Aspect-Oriented Systems. In: Int. Soft. Metrics Symp.

(2004)
40. Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on dependency

graphs. In: ICSE, pp. 531–540 (2008)

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 291–304, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Revealing Commonalities Concerning Maintenance of
Software Product Line Platform Components

Martin Assmann1, Gregor Engels1, Thomas von der Massen2,
and Andreas Wübbeke1,2

1 Dept. of Computer Science, University of Paderborn
Warburger Straße 100, 33098 Paderborn, Germany

{martin.assmann,engels,andreas.wuebbeke}@upb.de
2 DC Application Development, arvato services, An der Autobahn, 33310 Gütersloh

Thomas.vonderMassen@bertelsmann.de

Abstract. Software Product Line (SPL) development provides the possibility of
reusing common parts in similar software products. However the SPL approach
does not centrally improve the maintenance of software products of a Software
Product Line. This paper presents an approach for reducing maintenance costs
of SPL products by using the concept Software as a Service (SaaS) by revealing
exploitable commonalities concerning the maintenance of SPL platform com-
ponents. This SPL-SaaS approach was developed with the experiences of arvato
services integrating the software product line concept since years. It shows up
the advantageous and disadvantageous characteristics of platform components
that play a role for the concept combination. Main goal is to enable an IT-
architect to identify platform components to be adequate for a common mainte-
nance. Therefore criteria for the identification of platform components suitable
for the approach are derived from these characteristics. Furthermore the re-
quirements of the potential service users are examined and categorized concern-
ing their effects on the system architecture. Special requirements of customers
often lead to architectural constraints that are not compatible with the approach.
If both, the criteria are met and the architectural constraints are compatible, the
SPL-SaaS approach can be applied to a component. The whole approach is ap-
plied on an example of arvato services.

Keywords: Software product lines, Software as a service, Service-oriented
computing.

1 Introduction

Software Product Lines were becoming an important development paradigm over the
past years. The idea is to develop similar software products on a common basis, called
platform. Arvato services has gathered experience with the SPL approach and always
tries to exploit this approach in ever new ways. This paper presents the idea to extend
the SPL development process with the maintenance process and illustrates this with
the example of an address validation service. The goal is to reduce costs for maintain-
ing software products by using the concepts of Service-oriented Computing (SoC) and

www.manaraa.com

292 M. Assmann et al.

Software as a Service (SaaS). In [1] and [8] it is already pointed out that the combina-
tion of SPL, Service Oriented Architecture (SOA) and Component Frameworks can
benefit from each other. We have pursued a similar idea by combining SPL and SoC,
which is a subordinate concept of SOA. But our approach distinguishes from [1] and
[8] by not regarding everything as a service. The domain we are developing software
for, deals with customer specific solutions in heterogeneous system and user land-
scapes. We learned from it, that it is hardly possible to satisfy the different customer
needs and at the same time convert our SPL approach to a completely service oriented
SPL. Often the customers are against giving away the sovereignty of their systems.
Further on, things like non functional requirements (e. g. performance and security)
and the increased complexity of the systems and their infrastructure impede the reali-
zation of a fully service oriented approach. Although, we try to identify single (func-
tional) components, which can be exposed as a service without provoking the above
mentioned problems.

At first, this contribution presents the idea of reducing maintenance costs by deploy-
ing platform software components as central, common services that are used for differ-
ent software products at the same time. We point out the important characteristics of
platform components, which make them reusable in the way our approach proposes.
Thus, criteria for identifying platform components to be reused in the maintenance
process are developed by us. In addition a categorization of the requirements of differ-
ent service users is given. Any of these categories affect the system architecture in its
own way. Certain effects respectively constraints are not compatible with the SPL-
SaaS approach. Therefore it is revealed which requirement categories these are.

The remainder of this paper is structured as follows: In the 1st section foundations
on software Product Lines and the concept Software as a Service are introduced. In
the 2nd section the potential of extending the SPL development process is described.
In the 3rd section the characteristics of our approach with its advantages and disad-
vantages are figured out. In section 4 we present an exemplary address validation
service focusing its basic architecture. Related to the characteristics from section three
and with the experience from the address validation service we present criteria to find
fitting software components for our SPL-SaaS approach in section 5. Section 6 pro-
vides the related work in this area. The last section summarizes the results and points
out further research topics in this field.

1.1 Software Product Lines

The Software Product Line approach deals with the development of similar Software
Products based on a common platform. Thereby in all phases of the development
process reuse of different artifacts is the main aim. In this context the platform pro-
vides different types of artifacts: Artifacts can be common to all products developed
within the SPL. Artifacts can contain variation points to which variants are bind while
developing a concrete Software Product. Furthermore each Product can have individ-
ual parts. The SPL development process proposed in literature contains the phases
requirements engineering, design, implementation (realization) and testing. In these
phases different techniques (e. g. variability modeling) provide the possibility of reus-
ing parts of the platform in different products of the SPL. Further information about
SPL and its development process can be found in [2] and [3].

www.manaraa.com

 Revealing Commonalities Concerning Maintenance of SPL Platform Components 293

1.2 Service-Oriented Computing and Software as a Service

The second major concept that is part of this paper is Service-oriented Computing
(SoC). A relatively similar concept is Software as a Service (SaaS). Both utilize the
service notion and both relate to software that is offered as a service. The vision of
SaaS is to change the basic paradigm for development and maintenance of software
systems, which is discussed in detail in [4] by Turner. He proposes to deliver software
as a service rather than a licensed product. The main idea of the service is that it is not
deployed where it is used but somewhere centrally. Users bind services needed at
compile time or as preferred by Turner at runtime. Therefore the software services
must have adequate descriptions, must be discoverable and should be composable, i.e.
services can be created by combining other services. Service-oriented Computing, as
described by Papazoglou in [5] and [6], builds the foundation for Service Oriented
Architectures (SOA). SOA additionally addresses aspects like governance (like fi-
nances, employee training) and Business Process Management. Software services are
used to build composite applications. Again services are understood as distributed
components that need descriptions, discovery methods etc.

While SaaS aims on providing complete applications as services, SoC wants to
provide business functions of finer granularity. Though, both approaches aim at ad-
vantages like lowered maintenance costs, higher degree of reuse as well as a different
business model. It allows paying software per usage instead of buying licenses inflict-
ing high fix costs. In the following we will point out how the software product line
approach can benefit from these advantages.

2 Exploiting Potentials in the Whole SPL Lifecycle

As already pointed out in section 1.1 the SPL approach tries to increase the efficiency
of software development by identifying common components and exploiting their
similarities. But software costs money during its whole lifecycle. Regarding to soft-
ware development processes like the Rational Unified Process (RUP) or the waterfall
model the software lifecycle usually contains a phase for maintenance and operations.
Within the RUP this phase is called transition [7]. SPL covers mainly the first three
phases of the RUP. We believe that there are potential cost savings in the maintenance
and operations phase being not utilized yet.

The SPL approach primarily decreases the development effort for software prod-
ucts but hardly addresses reduction of their maintenance and operation costs. Deploy-
ing and maintaining products separately at customer sites, makes it hard to exploit
commonalities of the products. This means that the common components of a plat-
form are only reused until software product assembly. Afterwards, deployed common
components exist in separate system environments and are maintained individually.
Therefore their maintenance is as expensive as the maintenance of single software
products. As similarities between components exist but are not exploited at all regard-
ing maintenance we think that there is a high cost saving potential in the transition
phase. However, SPL domains that do not allow remote communication within their
software components cannot benefit from our idea, for example SPLs for embedded
systems like cell phone software.

www.manaraa.com

294 M. Assmann et al.

Domain
Maintenance and

Operations

Application
Maintenance and

Operations

remote usage

Fig. 1. Extension of the SPL development process modified from [2]

Figure 1 shows the extension of Pohl’s SPL development process [2] by a new pair
of sub-processes called domain maintenance and operations, and application mainte-
nance and operations. As the figure illustrates, the common components are held on
the domain level (maintained and operated by the SPL platform provider). Only the
product specific components are maintained and operated by the customer. The com-
munication between the two levels is realized in a remote way. As shown, the lifecy-
cle process is extended to the maintenance sub-processes, because change requests
concerning the components take effect on the maintenance.

Figure 2 illustrates the changes from the usual situation in SPL architectures (upper
part) to the situation that our approach suggests (lower part). The upper part of the
picture depicts the architecture of two customers with individual applications. In the
realization phase both have been assigned a bonus system component and a customer
management component. The blue background of the bonus system component indi-
cates that this is a custom component that usually has some customer specific modifi-
cations. The customer management component is deployed with little or no
modifications.

The transformation addresses the deployment of the customer management com-
ponent. Instead of deploying it once for every customer it is deployed as part of the
SPL Platform (platform component). The customer application now remotely uses the
component as a software service. This means that the component is reused and has to
be maintained and deployed only once. A major question arising when examining
figure 2 is: “What makes a common component in a software product line that is
suitable for the deployment as a service?” Probably just as important is to know: “Are
there any other advantages and which disadvantages come with the approach?” We
will answer both questions in the sections 3 and 5 in reversed order.

www.manaraa.com

 Revealing Commonalities Concerning Maintenance of SPL Platform Components 295

Client BClient A

Bonus
System A

SPL Platform
Provider

Customer
Mgmt. A

Customer
Mgmt.

Bonus
System

Bonus
System B

Customer
Mgmt. B

Client BClient A

Bonus
System A

Customer
Management

Bonus
System

Bonus
System B

Customer
Mgmt. X

SPL Platform
Provider

Remote
Usage

Remote
Usage

Component
plan

instanciaton

delegation

Component
instance

Remote
Call

Common
Artefact

Individual
Artefact

transformed to

Fig. 2. Changes in the component deployment

3 Characteristics of the Combined Approach

For our approach we want to answer two important questions. Firstly, what are the
advantages/ disadvantages? Secondly, when is a software component suitable for the
approach? In the following we list the characteristics starting with positive ones. With
each characteristic we try to identify influencing factors of software components that
can intensify/weaken the advantage/disadvantage. In section 5 these influencing factors
are carried together. With this information the software architect can determine
software components with characteristics that minimize disadvantages and maximize
advantages of the approach. Regarding software product lines there are always two
interesting aspects, the variation points and their binding time. There are two major
categories of variation points. Firstly, the deployment location of a service has to be
settled during design time. Secondly, there are minor variations for centrally deployed
services. These variations reflect the range of the customers’ requirements for the ser-
vice. After the range is anticipated the service is designed accordingly. By this the
variability can be bound at design time. The variation points are described in section 5.

3.1 Advantageous Characteristics

The central benefit of our approach will be effort savings in software product mainte-
nance and operations. In the classical SPL development process the reuse of common
parts of the platform is limit to the phases Domain Engineering, Domain Design,
Domain Realization and Domain Testing. The idea of sharing common parts in main-
tenance is based on the concept of Service-oriented Computing (SoC). Advantages in
detail are the following:

www.manaraa.com

296 M. Assmann et al.

First of all several issues can be consolidated. The first four points address this
topic. Firstly, hardware (e. g. a server system) can be used for several products. This
means to deploy a common platform component only once on a central server system
and share it via remote connection.

Secondly, by sharing a server system providing services of platform components
deployed on it, several maintenance and operation aspects can be improved: availabil-
ity and backup solution only has to be treated once, i.e. before we had several servers
and every of them had to have availability and backup mechanisms like idle stand-by
servers and mirrored hard disks. Functional extensions and updates to a common
component have to be made only once. The same applies to the correction of faults.
These changes always concern one component and thus the distribution effort is re-
duced, because the platform component is deployed only once on the shared server
system.

Thirdly, the overall operation costs for hardware resources are reduced because as
a single instance of a component requires less resources than several instances. The
mentioned advantages all lead to less effort concerning maintenance and hence reduce
the costs for it. According to this advantage suitable components should underlie
frequent changes for updates. Additionally they should have high availability and
backup requirements.

Fourthly, consolidation comes with an additional advantage concerning load-
balancing. Usually a customer with its own systems can hardly afford to cover peak
loads so his systems will just cover average load. Even if the centralized service is
only able to cover average load of all its consumers, a single consumer causing a
performance peak will not cause heavy performance losses on the central system,
because his peak load has to be put into relation with computing power of the system
designed for several customers. For the suitability of a component we can derive that
it is increased if the component causes critical peak loads with relatively low average
load.

Furthermore our approach on treating software product line platform components
as services opens up the possibility for new cost models, which are addressed by the
next two paragraphs. In this context the maintenance and operations costs for the
common parts of all products of the SPL can be shifted from a model with high fix
investment cost (e. g. license, hardware) combined with effort for human resources to
a usage cost model. Until now the customer usually buys a license of the component
(predictable fix costs) and takes care of the maintenance and operations himself (usu-
ally predictable fix costs). Now there are mainly two new options for payment.
Firstly, the customer can buy the service, its maintenance, and operations for a fixed
amount of money per period. The second possibility derives from the SaaS approach.
It means that the maintained and operated service is paid per usage only (variable
costs). The latter kind of cost model has definitely less fix costs, which reduces the
financial risks of the customer. Hence suitable platform components are expensive
with a high investment risk for the customer.

Furthermore, the new cost model provides the possibility of outsourcing the main-
tenance of the common parts of the product line. Firstly, this leads to the possibility
for the customer to save money, because the SPL platform provider is able to be more
efficient in maintenance and thus cheaper (even if the provider makes profit with it).
Secondly, it provides the chance for the product owner to concentrate on the product

www.manaraa.com

 Revealing Commonalities Concerning Maintenance of SPL Platform Components 297

specific core business functions. In the end this approach can lead to a win-win situa-
tion for the customer and the SPL platform provider.

In addition the customer can outsource functions that do not belong to his core busi-
ness. Especially in combination with the pay-per-usage cost model he gains flexibility,
i.e. he can dispose of the product respectively the service easily. From this we can
conclude that suitability is influenced in a positive way if platform components do not
provide core business functions of the customer. We suppose that customers do not
want to source out their core components, as they are too confidential and specialized.

3.2 Disadvantageous Characteristics

With the combined approach several drawbacks arise. These have to be concerned
with future research work on this topic. In the following we point out disadvantages
and as in the section before also the factors regarding software components that influ-
ence the disadvantages.

The first three points address drawbacks that arise from the centralization of com-
ponents. Firstly, all shared software services have to be client-capable unless they are
stateless. That means customer data is stored by the component this has to be taken
into account designing the component. If every customer runs its own instance, then
data and also access rights are divided without extra effort. Suitability of software
components is increased by statelessness and public access. Otherwise the implemen-
tation of client-capability is inevitable.

The second point is closely related to the previous one. Data sovereignty is trans-
ferred from the customer to the service provider. This may lead to acceptance prob-
lems if the data is of high confidentiality, e.g. bank transfer data. The requester has to
trust the provider that handles the data with adequate security mechanisms. Often
client-capability is assumed to be less secure as data of several requesters is stored in
the same main memory, providing no physical barrier. We think that a physical bar-
rier is not needed, no matter how confidential the data may be. Though, we cannot
prove this at the moment. Suitability of software components will be decreased if the
component stores confidential data and the customer does not trust the service pro-
vider at the same time.

Thirdly, virtual reuse means that a single server solution does the work, which has
some disadvantages compared to a solution with several completely independent
servers. A single point of failure is created by this. If the central component crashes,
then every customer is affected. Nowadays, this should only be a question of costs as
high-availability server solutions are on the market. The single point of failure is a
performance bottleneck at the same time. The load that was distributed over many
systems is now concentrated on one. Therefore a high performance system may be
required. On the one hand, in peak load situations again all customers are affected,
even those that are not responsible for the peak load situation. On the other hand a
load balancing between all the requesters is given now. Peak loads of single request-
ers do not lead to performance problems as their single server would have encoun-
tered. High availability and high performance server solutions are required unless
performance and availability of the centralized components are not critical. For the
suitability of a platform component this means that high average loads or simultane-
ous peak loads of several users are negative.

www.manaraa.com

298 M. Assmann et al.

Fourthly, communication via internet is sheer unavoidable. This has several conse-
quences: Secure transmission has to be implemented. This might not have been neces-
sary in decentralized solutions with data transfer in secure subnets only. Secure
communication usually leads to higher communication overhead. Furthermore, the
reliability of internet connections usually cannot be guaranteed. Last but not least it is
more difficult to implement communication that can be initiated by both, remote and
local, components. Suitability of components is decreased by data confidentiality as
well as high communication effort and the ability to initiate communication. Higher
reliability demands than the internet can offer prohibit the service approach.

The fifth point concerns change requests. As we pointed out an advantage in main-
tenance updates, we must also point out that individual change requests have a nega-
tive effect on the approach. Too much individuality caused by change requests leads
to software that is hardly maintainable and can decrease all the benefits of the ap-
proach. However, any change request leads to a down time if the software component
is not runtime reconfigurable. All customers are affected from the downtime but all
except from one have no benefit from the down time. Individual change requests are a
serious thread to the approach as they are to SPL in general. Only platform compo-
nents with little individual change requests are suitable, but these should be identified
in the SPL platform anyways.

4 The Address Validation Service

Arvato services is an enterprise specialized on customized software solutions and
services for outsourcing solutions. To achieve a high degree of efficiency by using
synergies among different projects, arvato services is on the way to implement a soft-
ware product line approach as depicted in figure 1.

The address validation service (AVS) is a service allowing access on an address
database. In general the requester sends an address to the service and the result is
whether the address is valid or not. The validity check of an address contains several
sub checks that are partly optional. For example the validity check if city and postal
code match is obligatory. The comparison with blacklists is optional and charged
separately.

Address validation is useful for many applications that can be (and some also
were) produced with a software product line approach. Therefore it was recognized as
a reusable component and as this it is used in different products.

If deployed at the customers IT site this component causes high maintenance costs.
First of all it has to be regularly updated with new customer data and secondly opti-
mization of algorithms is steadily done due to the high and still growing number of
data entries. Furthermore, the component requires relatively expensive hardware, so
that performance can be guaranteed. These are the main reasons why the address
validation component was designed to be a centrally hosted service. It is remotely
connected to customer systems that are produced with the product line and can also be
used as a stand alone service.

The cost model is realized as a pay per usage cost model, which means that for
each customer service calls are counted and charged accordingly.

www.manaraa.com

 Revealing Commonalities Concerning Maintenance of SPL Platform Components 299

Fig. 3. Basic service architecture

The address validation is an example that can realize many of the advantageous
characteristics while avoiding many of the disadvantageous characteristics of the SPL-
SaaS approach. For example the high cost savings that can be achieved because the
deployment on expensive customer hardware is avoided as well as the unproblematic
trust of customers for not having to store address validity data on their own systems.

The very basic system architecture of the address validation service is depicted in
figure 3. In the back end there is a data base containing all the relevant data for the
validity checks of the addresses. Its content is steadily kept up-to-date. Furthermore
there is a business service that contains all the business logic to serve customers’
validation requests. It has exactly one well defined interface offering all possible
operations.

As customers may have their requirements concerning the interface, adapters offer-
ing different interface technologies like SOAP and REST are created. In addition the
adapters may hide parts of the functionality, reducing the complexity for the customer
as well as strictly enforcing access rights.

The address validation service has become very successful and is now often used
as a stand alone product. But still we have great cost-reducing effects from embed-
ding the service in customized software solutions that are created with the help of our
software product line approach.

5 Characteristics of Suitable Software Components

To identify suitable components we derive two categories of characteristics. Firstly,
the high level characteristics delivering service candidates that are worth the effort of
being analyzed on the architectural level. If the analysis on the architectural level is
also positive, the realization of the platform component as a centrally deployed ser-
vice is assumed as economically recommendable.

5.1 High Level Characteristics

As already mentioned our SPL-SaaS approach has several advantages and drawbacks
that are dependant from the choice of the platform components centrally maintained

www.manaraa.com

300 M. Assmann et al.

and delivered as a service. With the experience gathered from the address validation
service in mind, we analyzed advantages and drawbacks mentioned in section three.
We derived adequate high level criteria to evaluate suitability of components for our
SPL-SaaS approach. We identified positive as well as negative criteria. If components
mainly fulfill the positive and mainly avoid fulfilling the negative criteria, they are
adequate service candidates having enough potential for achieving a reduction on
maintenance costs. The positive criteria maximizing the benefit of the approach are:

• High usage degree provides high reuse potential
• Frequent changes (functional extensions, fault corrections)
• High availability and backup requirements
• Components cause critical peak loads but have relatively low average load
• A high price which means a high investment risk (due to fix costs) for the

customer

On the other hand there are negative criteria that should be minimized with the
choice of suitable components to increase benefit:

• Providing core business functions of the customer
• Statefulness of the service and non-public access
• Storing confidential data with the component while the customer does not trust

the service provider
• High average loads or simultaneous peak loads of several users
• High communication effort
• Bi-directional initiation of communication
• Higher reliability demands (higher than the internet can provide)
• Individual change requests
• High performance requirements

5.2 Architectural Level Characteristics

If there is a service that fits to the criteria listed in the previous subsection, it is not yet
clear if it is adequate for our approach. This is because of the architectural constraints
that will arise due to the requesters’ requirements. In general the abstract system ar-
chitecture would be as depicted in figure 3. There is a database that is accessed by a
service and a business service implementing the business logic used by the database.
In addition there are several customer specific interfaces, which access the business
service interface.

But there can be differences in the architecture according to varying customers’ re-
quirements. We have depicted these differences that have to be covered by the
service in a feature diagram in figure 4. To any given service candidate the range of
possible customer requirements being supported has to be anticipated. This results in
a set of variation paths that have to be covered by the service solution. Every path
indicates a certain complexity concerning the service realization and operation. With-
in the figure the complexity is generally decreasing for leaves from left to right. The
variation points from the feature diagram are application logic, data base schema, data
base content and interface. Any of them can be required to be customer specific or
not, but not every combination makes sense. The feature diagram lists the five reason-
able variation possibilities.

www.manaraa.com

 Revealing Commonalities Concerning Maintenance of SPL Platform Components 301

Business
Service

Customer
specific

data base
schema

Customer
unspecific
data base
schema

Customer
specific

data base

Customer
specific

application Logic

Customer
specific
interface

Customer
unspecific

application Logic

Customer
specific

data base

Customer
unspecific
data base

Customer
specific
interface

Customer
unspecific
interface

Customer
specific
interface

Customer
unspecific
interface

Customer
unspecific

application Logic

Fig. 4. Service architecture feature diagram

First of the variation points is the data base schema. It may happen that customers
need to have different data base schemas within a service. This requirement makes it
quite hard to realize the service economically as it implies that each of the following
presented variation points is forced to the customer specific choice. An example is a
master data management service. Its purpose is to allow customers to store, update
and request their master data. This is useful as else wise master data would be
scattered over several databases. But for our case this would imply that we have to
maintain a data base schema for each customer. Customer specific business logic and
interfaces would also be required. For our address validation service, there exists only
one data base schema serving all customers.

Second variation point is the data base content. If customers can be served with a
service that has only one data base schema it still may occur that each customer has
its own content for the data base. Furthermore the customers do not want that their
data is accessible by other service users. An example for customer specific data base
content is a schedule service. It offers a calendar and participants known to the system
can be invited to meetings. The data base schema is the same for every customer,
client, but every customer wants to be sure that only his employees can see their own
appointments. To this end, data records could be marked with their owners name so
that access control can be guaranteed. In the end it means less effort to maintain a
database with a single schema instead of maintaining multiple schemas. In the case of
our address validation service all customers access the same data base content – the
addresses plus some extra validation content.

www.manaraa.com

302 M. Assmann et al.

Third variation point is the application logic. It is possible that not all customers
want exactly the same operations on the data. If that is the case, usually the data base
schema and the thus also the data base content will be customer specific. This is the
worst case scenario because it means that every customer has its own specific service.
This makes it hard to realize cost efficiency with our SPL-SaaS approach and is gen-
erally not encouraged. If there is only customer unspecific application logic, then we
assume that there are only customer unspecific data base schemas. Executing the
same operations on different data schemas is generally not advisable. The address
validation service offers the same application logic for all customers.

Fourth variation point is the interface towards the customer. Even if the service is
always part of products built with the SPL and the customer does not access it di-
rectly, it is helpful to have different interfaces. For example, if variability within the
SPL platform allows products based on different technologies, several interfaces dif-
fering in technology are useful. The different interfaces are only adapters to the inter-
face offered by the business component. Adapters could also be located on the client
side, but if other customers want to access the service directly, it is an advantage be-
ing able to offer a plethora of interfaces to the service. A customer specific interface
can also hide some functionality if the complexity of functions shall be reduced to-
wards the customer. Additionally it can be used to restrict the access to certain func-
tions by simply not adapting them. The adapters can restrict the functionality of the
original interface but do not change it in other ways. Different point-to-point security
variations, like REST over https, can also be covered with adapters. The address vali-
dation service offers different interfaces like SOAP over JML and REST over http.

We have seen that not all combinations of features make sense. According to figure
four there are five combinations. Each combination implies a different complexity for
the centralized service.

The left most leaf shows the most inadequate case. Customer specific data base
schemas require higher development, test and maintenance efforts. Therefore the
realization of a service that has only customer specific properties is discouraged.

The right most leaf has only customer unspecific variants. This means that there is
no variability that has to be bound. The service provider is in the lucky position to
design one service and to have multiple service users. In this case efforts for design,
test and maintenance do not scale with the number of users. This is the good situation
as the savings with the centralized service approach are very high.

Customer specific interfaces are relatively easy to develop and maintain. Testing
new customer specific interfaces can be reduced to testing the sole interface instead of
testing the whole service. Our address validation service is an example for a service
categorized like the second leaf from the right. It has different interfaces and we have
experienced that each interface causes only little effort overall. Furthermore an exist-
ing interface might be reused for a new customer. The more interfaces there are the
higher is the probability to be able to reuse an interface.

The two remaining leaves in figure 4 cause more design, test and maintenance ef-
fort, but are still considered as suitable service candidates.

www.manaraa.com

 Revealing Commonalities Concerning Maintenance of SPL Platform Components 303

6 Related Work

The idea of combining the SPL and SaaS approach is addressed by several contribu-
tions. The importance of the topic is brought to life by [1] and [8].

In [9] the authors describe the idea of a web based product line. In this case techno-
logical issues on building such product lines are discussed. Compared to our approach
the contribution concentrates on building product lines completely from web services.

[10] concentrates on variability in web service flows. Some of the described vari-
ability points like protocol are also interesting for our approach, but the aim of our
contribution is not centrally to handle variability in the flow of web services.

Chang and Kim also recognized the common reuse potentials in SPL and SOA
[11], but they consider everything as a service. Thus, they identify variation points on
process level, which is not applicable for our domain, because of the previously men-
tions drawbacks (see also section 1).

An interesting approach combining SOA and SPL concepts for creating business
process families is given in [12]. Though, this approach does not cover the deployment
phase.

In [13] the authors describe how to manage variability in service centric systems
with technologies from the SPL approach. Our approach works the other way round
and provides service technology for SPLs.

7 Conclusions and Future Work

In this paper we presented an approach to evaluate commonalities in platform compo-
nents to be suitable to reduce maintenance costs of software products, developed from
a SPL. Therefore the SPL process is extended with the maintenance process. This
means to identify and deploy common platform components centrally and offering
them as a service. The service then is used for different products of the SPL. This
concept is called Software as a Service as the common platform components can be
seen as a service, provided for different products. The presented approach holds sev-
eral advantageous and disadvantageous characteristics ready, which have to be taken
into account for selecting adequate candidates for common services. From these char-
acteristics several criteria for identifying suitable platform components have been
derived. Additionally we have developed a service architecture feature diagram,
which provides the possibility to evaluate components concerning their adequacy for
our SPL-SaaS approach. Suitable components have a high reuse potential while caus-
ing little service development costs. We presented an example of such a component
from the arvato environment to show the practical need of our idea.

The presented criteria are a first step for a detailed evaluation catalogue for assess-
ing common components concerning to their reuse potential. In future research we are
going to built up this evaluation catalogue to evaluate the reuse potential in reference
to maintainability. Afterwards the catalogue is going to be used and evaluated by
analyzing the arvato SPL to show its workability.

www.manaraa.com

304 M. Assmann et al.

References

1. Helferich, A., Herzwurm, G., Jesse, S., Mikusz, M.: Software Product Lines, Service-
Oriented Architecture and Frameworks: Worlds Apart or Ideal Partners? LNCS, pp. 187–
201. Springer, Heidelberg (2006)

2. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer, Heidelberg (2005)

3. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley Professional, Reading (2001)

4. Turner, M., Budgen, D., Brereton, P.: Turning Software into a Service. Computer 36(10),
38–44 (2003)

5. Papazoglou, M.P., Georgakopoulos, D.: Service Oriented Computing. Comm.
ACM 46(10), 25–28 (2003)

6. Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and Directions.
In: 4th International Conference on Web Information Systems Engineering (WISE 2003),
Rome, Italy (2003)

7. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addi-
son-Wesley Professional, Reading (1999)

8. Wienands, C.: Synergies Between Service-Oriented Architecture and Software Product
Lines. In: 2006. Sie-mens Corporate Research, Princeton, NJ (2006)

9. Sillitti, A., Vernazza, T., Succi, G.: Service based Product Lines. In: Proceedings of the
3rd International Workshop on Software Product Lines: Economics, Architectures, and
Implications, ICSE 2002 (2002)

10. Segura, S., Benavides, D., Ruiz-Cortés, A.: A Taxonomy of Variability in Web Service
Flows Service Oriented Architectures and Product Lines. In: SOAPL, SPLC 2007, Kyoto,
Japan (2007)

11. Chang, S.H., Kim, S.D.: A Variability Modeling Method for Adaptable Services in Ser-
vice-Oriented Computing. In: Software Product Line Conference, SPLC 2007, pp. 261–
268 (2007)

12. Ye, E., Moon, M., Kim, Y., Yeom, K.: An Approach to Designing Service-Oriented Prod-
uct-Line Architecture for Business Process Families. In: Proceedings of the 9th Interna-
tional Conference on Advanced Communication Technology, Phoenix Park, Republic of
Korea, pp. 999–1002 (2007)

13. Lee, J., Muthig, D., Kim, M., Park, S.: Identifying and Specifying Reusable Services of
Service Centric Systems Through Product Line Technology. In: Proceedings of the First
Workshop on Service-Oriented Architectures and Product Lines (SOAPL 2007), pp. 57–67

www.manaraa.com

L.A. Maciaszek, C. González-Pérez, and S. Jablonski (Eds.): ENASE 2008/2009, CCIS 69, pp. 305–318, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Service Based Development of a Cross Domain Reference
Architecture

Liliana Dobrica1 and Eila Ovaska2

1 University Politehnica of Bucharest, Faculty of Automatic Control and Computers
Spl. Independentei 313, Romania

liliana@aii.pub.ro
2 VTT Technical Research Centre of Finland, Oulu, Kaitoyvala 1, Finland

eila.ovaska@vtt.fi

Abstract. An important trend of software engineering is that systems are in
transition from component based architectures towards service centric ones.
However, software product line engineering techniques can help in a quality
based and systematic reuse. The content of this paper addresses the issue of
how to perform design and quality analysis of cross domain reference architec-
ture. The reference architecture is designed based on the domains requirements
and features modelling. We propose a service based approach for cross-domain
reference architecture development. Throughout the sections we try to introduce
an innovative way of thinking founded on bridging concepts from software ar-
chitecture, service orientation, software product lines, and quality analysis with
the purpose to initiate and evolve software systems.

Keywords: Software, Cross domain reference architecture, Service, Design,
Analysis, Quality, Scenarios.

1 Introduction

In software development, the systems of yesterday become components of today
systems. The fundamental principle stating that “any system consists of components”
is common for any technical system and it is sometimes called “a law of nature” [6].
Among the requirements and constraints that have to be satisfied we can mention a
higher diversity and complexity of systems and components, increased quality, pro-
ductivity and reuse content, standardization, and stricter time-to-market. The domain
technology causes exponential growth of the designed systems.

Nowadays many systems are used as subsystems in a variety of domains such as en-
terprise systems, embedded systems, and so on. In these domains there is a variety of
functions; however, they might be composed of a limited number of common soft-
ware/hardware components. In various industries it has been recognized a significant
duplication of development effort for hardware, software and services [1]. Due to the
escalating complexity level, the technology trends and increased competition in the
world market, a coherent and integrated development strategy is required. It becomes a
research priority the creation of a generic platform and a suite of abstract components
with which new developments in different application domains can be engineered with

www.manaraa.com

306 L. Dobrica and E. Ovaska

minimal effort. Generic platforms, or reference designs, can be based on a common
architectural style that supports the composition of systems out of independently de-
veloped subsystems that meet the requirements of the different application domains.
Given a core architectural style, different components are created for different applica-
tion domains, while retaining the capability of component reuse across these domains.

Reference architecture (RA) serves several purposes, of which the most important
are knowledge base, starting point and reuse. Knowledge base represents a common
terminology for software system architects. The shared terminology enables architects
to communicate experiences more efficiently. Starting point means that architectural
documentation can be used as a root for an iterative development process, reducing in
this way the effort for designing architectures for new products. Reuse in the sense
that the RA describes the generic structure and behaviour of the services. This makes
integrating existing compliant software components easier, and thus increases the
reuse potential of those services. The RA components, interfaces and constraints are
abstract and complex. Not all the development organizations will understand them
well. Not knowing RA capabilities may lead to the architecture not being fully used.
However, the aim is that all products should fit into the provided RA and benefit from
it. Requirements that have already been considered might be re-implemented for vari-
ous products. An impact of multi-implemented requirements is an unstable RA.

In this paper we propose a coherent and integrated development strategy for com-
plex systems that considers the architecture the main design artefact. We argue with
our experiences in the software architectures design and analysis for various domains
[4][5] and other researchers’ recent studies that will be revealed during the paper. Our
contribution is in the synthesis of the most important issues that can be applied in a
cross domain development strategy based on quality. We propose a service based
approach for cross-domain RA development.

2 Background

The focus of this section is to discuss about those elements directly connected to the
paper’s contribution. Since our approach combines a couple of matured concepts from
software and service architecture, software product line and quality evaluation at
architectural level in a new and synergetic manner, these will be introduced.

2.1 Software and Service Architecture

Software architecture (SA) provides design-level models and guidelines for compos-
ing software systems. The SA is defined as “the structure or structures of the system,
which comprise software components, the externally visible properties of those com-
ponents, and the relationships among them” [12]. The SA description is designed to
address the different perspectives one could have on the architecture. Each perspec-
tive is a view. The information relevant to one view is different from that of others
and should be described using the most appropriate technique. Several models have
been proposed including a number of views that should be described in the SA. The
view models have something in common. They address the static structure, the dy-
namic aspect, the physical layout and the development of the system. In general, it is

www.manaraa.com

 Service Based Development of a Cross Domain Reference Architecture 307

the responsibility of the architect to decide which view to use for describing the SA.
Architectural styles are recurring patterns of system organization. Their application
results in systems with known, desirable properties. In practice, a style consists of
rules and guidelines for the partitioning of a system into subsystems and for the de-
signing of the interactions among subsystems. The subsystems must comply with a
style to avoid a property mismatch at the interfaces between them.

Service architecture is a set of concepts and principles for specification, design,
implementation and management of software services [7]. This definition is similar to
SA that also includes the principles for guiding its design and evolution and has a
strong influence over the lifecycle of a system [10]. Service architecture refers mostly
to the software architecture of applications and middleware which is the software that
is located between applications and network layer. A middleware layer hide the un-
derlying network environment complexity insulating applications from explicit proto-
col handling, disjoint memories, data replication and parallelism. Furthermore, the
middleware layer masks the heterogeneity of operating systems, programming
languages and networking technologies to facilitate application programming and
management [8]. A service based approach provides support for adaptability and
flexibility of components and frameworks [9]. A design approach of services at the
architecture level has to consider quality attributes and standards.

2.2 The Software Product Line Development

In general the software product line development consists of two stages which are
domain engineering and application engineering (Fig. 1) [15].

Domain engineering is divided in: Domain Analysis, Domain Design and Domain
Implementation. The domain analysis consists of capturing information and organiz-
ing it as a model. Some methods, such as FODA (Feature-Oriented Domain Analysis)
[3] propose a set of notations for the domain modelling using the notion of features to
refer to products properties. The input represents domain knowledge and outputs are
domain requirements. The domain design consists of establishing the product line
architecture. The domain implementation consists of implementing the architecture as
software components. The results represent core assets such as domain requirements,
product-line architecture and components. The application engineering stage consists
of building products based on the results of domain engineering and users needs.
During application analysis of a new system, the requirements of the existing domain
model, which matches the user’s needs, are selected. Applications are assembled from
the existing reusable components. Variability management is a key issue in the suc-
cess of product line engineering.

2.3 Quality Evaluation Techniques at the Architectural Level. Scenarios

Evaluation techniques are categorized in questioning and measuring techniques [12].
The first category generates qualitative questions to ask about a SA and they are ap-
plied to evaluate SA for any given quality. Questioning techniques include scenarios,
questionnaires and checklists. Measuring techniques suggest quantitative measure-
ments to be made on SA. They are used to answer specific questions and to address
specific software qualities, and therefore, they are not as broadly applicable as

www.manaraa.com

308 L. Dobrica and E. Ovaska

Core AssetsDomain engineering

Domain Analysis

Domain
Implementation

Application engineering

Application Analysis

Application
Implementation

Requirements

Product-line Architecture

Components

Domain Knowledge User Needs

Domain Design Application Design

Product

Fig. 1. Software product-line development

questioning techniques. This category includes metrics, simulations, prototypes and
experiences. In terms of quantitative and qualitative aspects, both classes of tech-
niques are needed for evaluating SA. Various analyzing models expressed in formal
methods are included in quantitative techniques. Qualitative techniques illustrate SA
evaluation with scenarios. Scenarios are rough, qualitative evaluations of architecture.
Scenarios are necessary but not sufficient to predict and control quality attributes and
have to be supplemented with other evaluation techniques. Including questions about
quality indicators in the scenarios enriches SA evaluation.

The existing practices with scenarios are systematized in [12]. The usage of scenar-
ios is motivated by the consensus it brings to understanding of what a particular
software quality really means. Scenarios are a good way of synthesizing individual
interpretations of a software quality into a common view. This view is more concrete
than the general software quality definition and it also incorporates the specifics of a
system to be developed, i.e. it is more context sensitive. Scenarios are a postulated set
of uses or modifications of the system, they are typically one sentence long, and
modifications reflected in scenarios could be a change to how one or more compo-
nents perform an assigned activity, the addition of a component to perform some
activity, the addition of a connection between existing components, or a combination
of these factors. The scenario development is based on the system requirements that
are considered in the architecture. Scenarios have to be sufficiently concrete to ensure
the expressiveness of the analysis.

3 Our Approach

In an innovative way of thinking our work bridges the mature concepts from software
architecture, service orientation, software product lines and quality analysis with the
purpose to initiate and evolve complex software systems. We consider that one of the
next major steps forward in SA development will be driven by methodologies and
tools that give systematic and flexible means of reaching a goal. In our view a service
based approach for development of a cross domain RA integrates iteratively specific
design and quality analysis techniques. This section gives a big picture of these techniques.

www.manaraa.com

 Service Based Development of a Cross Domain Reference Architecture 309

3.1 Architecture Design

We define a cross domain approach that extends to three levels of the architecture
development of a software system (Fig. 2.). We consider the system as a collection of
cooperating services that deliver required functionality. These services may be exe-
cuted in a networked environment and may be recomposed dynamically. The RA
level includes core services and focuses on commonality analysis. Also the RA
includes rules or constraints on how core services should be combined to realize a
particular functional goal. The domain architecture level includes domain specific
services and it requires variability management concerns. The last level is reserved for
the set of product architectures, where rules for product derivation and configuration
are included. A feature model is a prerequisite of our approach [2]. This model is
essential for both variability management and product derivation, because it describes
the requirements in terms of commonality and variability, as well as it defines de-
pendencies. We have built an UML meta-model for features modelling (Fig. 3.). The
features model specifies dependencies called composition rules. The requires rule
expresses the presence implication of two features and the mutually exclusive rule
captures the mutual exclusion constraint on combinations of features.

RA defines quality attributes, architectural styles and patterns and abstract archi-
tectural models (Fig. 4.). Quality attributes clarify their meaning and importance for
core service components. The interest of the quality attributes for the RA is how the
quality attribute interacts with and constrains the achievement of other quality attrib-
utes. Services have to meet many quality attributes. Modifiability of a service is di-
vided into the ability to support new features, simplify the functionality of an existing
system, adapt to new operating environments, or restructure system services. Inte-
grability measures the ability of the parts of a system to work together. It depends on
the external complexity of the components, their interaction mechanisms and proto-
cols, and the degree to which responsibilities have been clearly partitioned.

The styles and patterns are the starting point for architecture development (Fig. 4).
Architectural styles and patterns are means to achieve qualities. A style defines a class
of architectures and it is an abstraction for a set of architectures that meet it. An archi-
tectural pattern is a documented description of a style or a set of styles that expresses
a fundamental structural organization schema applied to high-level system subdivi-
sion, distribution, interaction, and adaptation [13].

Design patterns, on the other hand, are on a detailed level. They refine single compo-
nents and their relationships in a particular context [14]. In this way, the RA creates the
framework from which the architecture of new products is developed. It provides generic
architectural services and imposes an architectural style for constraining specific domain
services in such a way that the final product is understandable, maintainable, extensible,
and it can be built cost-effectively. Potential reusability is highest on the RA level. Core
services and the architectural style of the RA are reused in every domain architecture.
The RA is build based on a service taxonomy. We adopted the idea from WISA [11]
of an existing knowledge on software engineering that is integrated and adapted to ser-
vice engineering. The standards related to each domain, applicable styles and patterns
and existing concepts of services and components are the driving forces in the develop-
ment. A service taxonomy defines the main categories called domains. Typical features
that have been abstracted from requirements characterize services. The reason for a

www.manaraa.com

310 L. Dobrica and E. Ovaska

 Reference Architecture
 (cross domain)

Core Services

 Domain Architecture

Domain Specific
Services

Variability
management

 Product Architecture

Concrete
Services

Rules for product
derivation and
 configuration

Commonality

Fig. 2. Three-level architecture development approach

*

realize

Root 1

Features
Model

Features

Composition
Rules

Requires Mutual
exclusion

Core Services
Specific Services

Package

Leaf

Mandatory Optional Alternative Optional
Alternative

Fig. 3. Features - UML metamodel

Reference Architecture

Styles and
Patterns

Core Services

Quality
Attributes

Service
Taxonomy

Taxonomy of Constraints
and Requirements

Standards

Fig. 4. RA realization

www.manaraa.com

 Service Based Development of a Cross Domain Reference Architecture 311

service taxonomy is guiding the developers on a certain domain and getting assistance in
identifying the required supporting services and features of the services.

Domain architecture describes ready made building blocks that assist applica-
tion/products developers in using specific domains services. When the RA has been
defined, the existing components and services are considered as building blocks of the
architecture of the set of products. The domain services provide variable assets reposi-
tory. Variability appears in functional and non-functional requirements (including
quality attributes). A structured domain architecture repository may be provided at
this level. A schema for this repository has to be defined in a form such as relation-
ships between services. In this way, we are mapping domain specific services to core
abstract services. The specialization relation is a solution to be used for variability
management. Run-time quality attributes variability requires tool support for its mod-
elling. This tool must provide monitoring mechanisms, measuring techniques and
decision models for making tradeoffs [3].

The product architecture level consists of concrete services that are derived and
configured based on rules. The goal of product derivation is to reach a configuration
in which necessary variabilities have been bound. The decision model for bounding
specific services of a domain to a product may be in a tabular form or a more compre-
hensive tool based on the feature types and composition rules. By selecting a consis-
tent set of features that are asked for an individual product, the corresponding domain
specific services that realize those features are selected from the domain architecture
repository to constitute the product.

3.2 Architecture Analysis

We have applied an analysis method that consists of the following five steps:

1. Deriving of change categories from the problem domain. Fig. 5 presents five cate-
gories of change scenarios derived from the problem domains. A change scenario
related to one of these categories may require other changes in the other categories. It
is recommended to consider this possibility in the scenario development process.
Usually it is easy to identify the main roots and add subsequent features to the domain
when the problem domain is well-organized.

2. Scenarios identification. Possible changes may happen in the life of the system
based on the derived categories. Scenarios should illustrate the kinds of anticipated
changes that will be made to the system. A common problem of the scenario devel-
opment is when to stop generating scenarios. Using a set of standard quality attrib-
ute-specific questions we ensure proper coverage of an attribute by the scenarios. The
boundary conditions should be covered. A standard set of quality-specific questions
allows the possibility of extracting the information needed to analyze that quality in a
predictable, repeatable fashion. It is assumed that the architecture is a good one and it
is not necessary to generate scenarios to verify the functional requirements. Otherwise
these should also be considered. When analyzing the modifiability we must look for
possible changes in the problem domain.

3. Architecture Description could be performed in parallel with the previous step.
Architecture description may use multiple views. For a common level of understand-
ing a small and simple lexicon could be used in describing structures.

www.manaraa.com

312 L. Dobrica and E. Ovaska

Software
technology

Domain-specific
Hardware

Functional
requirements

Non-functional
requirements

General- purpose
Hardware

Problem domain of a software system CHANGES

Fig. 5. Categories of scenarios

4. Evaluate the effect of the scenarios on the architecture elements. The effect is esti-
mated by investigating which services are affected by that scenario. The cost of the
modifications associated with each change scenario is predicted by listing the services
that are affected and counting the number of changes. The objective is to get a meas-
urement of the quality of the core and domain services with respect to the anticipated
variability in functional or non-functional characteristics.

5. Scenario interaction. The result of the effects evaluation represents the input for
this step. The activity is to determine which scenarios affect the same service. High
interactions of unrelated scenarios indicate a poor separation of concerns. If any of the
scenarios affects a core service this is no more part of the RA, but a domain specific.

4 Example

We illustrate the service based development of a cross domain reference architecture
with a simple example of embedded software systems. Our approach is applied to
design and quality analysis of a measurement controller software architecture.

4.1 Example Description

Our example is abstracted from our experiences with the architecture design of a
scientific on-board silicon X-ray array (SIXA) spectrometer control software. SIXA is
a multi-element X-ray photon counting spectrometer. It consists of specific domain
hardware elements. The SIXA measurement activity consists of observations of time-
resolved X-ray spectra for a variety of astronomical objects. Fig. 6 introduces the
context view of SIXA considering it a measurement controller. External elements are
a command interface and physical devices, i.e. sensors and actuators. The system is
programmed and it operates using a set of commands sent from a command interface.

The role of the spectrometer controller is to control the following modes: (a) En-
ergy Spectrum (EGY), which consists of three energy-spectrum observing modes:

Parameters
Start
Stop

Measurement
Controller

Command
Interface

commands Physical devices
(Detectors)

Science data

data reports

Fig. 6. Context view of the system

www.manaraa.com

 Service Based Development of a Cross Domain Reference Architecture 313

EGY_Controller SEC_Controller

SECwithEGY_Fetures EGY_Fetures SECFetures

AbstractSpectrometerFetures

Depends Depends Depends

Depends

Depends Depends

SECwithEGY_Controller

Fig. 7. Mapping features into packages

Energy-Spectrum Mode (ESM), Window Counting Mode (WCM) and Time-Interval
Mode (TIM). (b) SEC, which consists of single event characterization observing
modes: SEC1, SEC2 and SEC3. Each mode could be controlled individually. A coor-
dinated control of the analogue electronics is required when both measurement modes
are on.

The analysis result of the requirements for domain engineering is the features
model. This has been structured in packages (Fig. 7). The with reuse aspect of reus-
ability is described in the architecture by the abstract features. The abstract features
are encapsulated in three main abstract domains MeasurementController, Data Man-
agement and DataAcquisition. They are completely reused in all the derived products.
The AbstractSpectrometerFeatures package has the highest degree of reusability but
also the highest degree of dependability. The abstract features depend on the com-
monality between EGY and SEC features. A change in the domain of a product is
reflected in the degree of reusability of the abstract domain features.

The sets of products that could be derived from the domain specific services during
application engineering are: (1) P1 – EGYController, which includes specific services
of a standalone control of EGY mode; (2) P2 – SECController, which includes spe-
cific services of a standalone control of SEC mode; (3) P3 – SECwith EGYController,
which includes specific services of coordinated control.

4.2 Example Architectural Design

The architecture model is documented around multiple views describing conceptual
and concrete levels, for each view a static and dynamic perspective being offered.
Architecture documentation addresses specific concerns about measurement control,
data acquisition control and data management. The views are illustrated with diagrams
expressed in UML-RT, a real-time extension of UML. The conceptual level considers
a functional decomposition of the architecture into domains. The relationships between
architectural elements are based on “pass control-to” and “pass data-to” or “uses”.
Functional decomposition is useful for understanding the interactions between entities
in the problem space, for understanding the cross-domain perspective, and hence there-
after, the possibilities for creating a system of systems. It includes: (1) Measurement
Controller Subsystem (MCS), which has the main role in controlling acquisition and
dumping science data. (2) Housekeeping (HK), which forms the reports and sends
them to command interface when requested by the command interface subsystem. Also

www.manaraa.com

314 L. Dobrica and E. Ovaska

it uses services provided by PMS. (3) Command Interface Subsystem (CIS), which
hides the hardware buses’ interfaces from the rest of the software. (4) On-board clock
(OBC), which maintains an on-board clock used for time-stamping spectra in data
files. Also it includes services for timing the start/stop of spectra and targets and other
timing related services. (5). Memory Management Subsystem (MMS), which provides
services for handling the storages in RAM and EEPROM areas. (6) Parameter Man-
agement Subsystem (PMS), which provides services for initiating, changing and read-
ing the on-board parameters in EEPROM. (7) StartUp, which implements the power up
and watchdog timer start-up. (8) Communication buffer management (BUFMAN),
which provides services for allocating/deallocating transmit buffers. (9) CPU specific
services, which provide optimized high speed assembly language services (word copy,
interrupt enable/disable). (10) Hardware encapsulation modules, which control specific
hardware (analog electronics, watchdog timer). The concrete level considers a more
detailed functional description, where the main architectural elements are packages,
capsules, ports and protocols. The relationships are association, specialization, gener-
alization, etc. Considering the dynamic aspect state-chart diagrams and message-
sequence charts are also part of this description level. Abstract components are
modelled based on a recursive control architecture style [16].

Fig. 8 presents the spectrometer controller cross domain architecture design ap-
proach. The RA encapsulated in the Measurement «Domain» is composed of three
core abstract «Domain»s Measurement Control, DataAcquisitionControl and Data-
Management. In each core «Domain» abstract features are collected. The Measure-
mentControl is responsible for services of starting and stopping the operating mode
for data acquisition according to the commands received from the command interface
and according to the events generated in other parts of the software. DataAcquisition-
Control service collects events (science data) to the spectra data file during observa-
tion of a target. This abstract service includes as well as hides data acquisition details.
DataManagement abstract services provide interfaces for storing science data, open-
ing/closing/writing the data files, hiding storing details and controlling transmission
of the stored data to command interface.

Domain architecture. Domain architecture consists of domain specific services and
variability management services. Each of the three core services is specialized in
domain specific services. For example, MeasurementControl is specialized in Stan-
dAloneControl (SAC) and CoordinatedControl (CC), DataAcquisitionControl (DAC)
is specialized in EGY_DataAcquisitionControl (EGY_DAC) and SEC_DataAcquisi-
tionControl (SEC_DAC), Data Management (DM) is specialized in EGY_Data Man-
agement (EGY_DM) and SEC_DataManagement (SEC_DM). This architecture
includes services associated to variability management.

Product architecture. Product architecture of the sets of products includes rules for
product derivation and configuration. Table 1 presents domain specific services and
products derivation. Products are horizontally distributed and the domain services are
dispersed vertically. Each cell tij of the table is marked if product Pj uses component
Ci. For example, two products, P1 and P2, include a SAC service of the measurement
control domain.

www.manaraa.com

 Service Based Development of a Cross Domain Reference Architecture 315

<<Multiple Domain>>
Measurement

<<Domain>>
MeasurementControl

<<Domain>>
DataManagement

<<Domain>>
DataAcquisitionControl

<<Service>>
CC

<<Service>>
EGY_DM

<<artifact>>
VariabilityManagementTool

EGY_Controller SEC_Controller SECwithEGYController

<<artifact>>
RepositorySchema

<<artifact>>
RulesForProductDerivationAndConfiguration

<<Service>>
SAC

<<Service>>
EGY DAC

<<Service>>
SEC DAC

<<Service>>
SEC DM

Fig. 8. Spectrometer controller cross domain architecture design approach

Table 1. Domain specific services and products

Products Domain Specific Service
P1 P2 P3

MeasurementControl SAC x x
 CC x

DataAcquisitionControl EGY_DAC x x
 SEC_DAC x x

DataManagement EGY_DM x x
 SEC_DM x x

4.3 Example Architecture Analysis

We have defined change scenarios for changes in general purpose hardware, domain
specific hardware, technology, functionality, non-functional requirements and other
changes. For each category we’ll exemplify with a scenario in the following. The
effect of the scenarios on the service components and the required views of the archi-
tecture are discussed.

1. General purpose hardware changes scenario: “Change the central processing
unit (CPU)”.

Effect on the architecture: CPU specific services provide highly optimized high
speed assembly language services (high speed word copy, interrupt enable/disable,
etc.) The services are not applicable at the level of description.
Result: Not applicable to the available views.

2. Domain-specific hardware changes scenario: “Add a hard disk for a SEC
product”.

www.manaraa.com

316 L. Dobrica and E. Ovaska

Effect on the architecture: The SEC_controller and SECwithEGY_controller con-
tain a hard disk for data storage. This scenario requires a lot at the architectural level,
most of them related to the DataManagement domain.
Result: Multiple changes in detailed functional decomposition, localized in the
SEC_DM specific domain service.

3. Technology changes scenario: “Change the generator polynomial (different
from CCITT polynomial) for 16 bit CRC sum of errors handlers”

Effect on the architecture: MMS consists of service functions for managing the
storage RAM and EEPROM. It also includes a state for refreshing RAM and the
memory error exceptions handlers (double and single bit).
Result: Modification of one component in the conceptual view.

4. Functional requirements changes scenario: “How is the architecture affected
when the operation mode is changed?”

Effect on the architecture: The operation modes are part of the variability among
domains. These are encapsulated into DataAcquisition and DataFileManagement. The
measurement control domain is decoupled from the operation modes of different
products.
Result: No change to the RA – abstract concrete or features of measurement control.

5. Non-functional requirements changes: “How is the average SRG-bus speed of
744kbit/sec on reading data from disk, which is time critical, maintained? “

Alternative solutions: (1) Change the hard disk: Use a Fast disk: Optimal disk in-
terleaving factor and storing the data file in sequential sectors on the disk. (2) Send
filler blocks to the bus while waiting for the disk – a sufficient number of filler blocks
could be reserved in the vector word sent in advance to BIUS. (3) Use a busy bit of
SRG-bus. (4) Optimize disk driver – If the disk drive has been changed, the software
has to be tuned separately for the new disk.
Result: Not applicable to the available views.

A good architecture design must provide a good localization of changes. Most of
the changes required by scenarios were applied to one service component, which
indicates a good decoupling of concerns. The most important change was the addition
of the hard disk, a variability among domains. This scenario required changes to the
domain specific services. By structuring the RA in abstract services, which encapsu-
late abstract features of the domains and concrete components, which in turn represent
specialization of the variable features, the effects of the change scenarios are mini-
mized and localized. Changes did not affect the core services of the cross domain RA,
which confirms the stability of the architecture across domains. The results of the
analysis depend on the description of the architecture. By using only the decomposi-
tion view on the conceptual level the effects of the change scenarios are reduced be-
cause not all the details are included. On the concrete level are the views developed
with the help of a CASE tool and the effect of change scenarios is more relevant. This
is an argument for that the evaluation method should be applied iteratively while the
architecture design becomes more detailed. The purpose of the evaluation is to
analyze the architecture to identify potential risks by predicting the quality of the
products before they have been built. Iterative methods promote analysis at multiple
resolutions as a means of minimizing risk at the acceptable levels of time and effort.
Areas of high risk are analyzed more profoundly (simulated, modelled or prototyped)
than the rest of the architecture. Each iteration determines where to analyze more
deeply in the next iteration.

www.manaraa.com

 Service Based Development of a Cross Domain Reference Architecture 317

The measurement controller domain also requires run-time qualities such as per-
formance, safety and reliability. These are mandatory root features for the domain.
However, variants could include variability in these aspects. These variable features
must be considered from the cross domain design perspective in order to minimize the
risk that the final software products do not conform to these quality attributes. For
architectural evaluation of these aspects several progresses have been identified in the
literature that will be analyzed in our future work. It is important to estimate what is
the degree of reuse at architectural level and what are the reusable assets when the
variability of these run-time qualities is considered.

5 Conclusions and Future Work

We have proposed an approach for software development based on a cross-domain RA.
We have provided an integrated strategy with an incremental design and analysis ap-
proach based on services, which is more practical, easy to follow and benefits of advan-
tages provided by service engineering. Our approach has been validated by a simple
example. The problem dimension for the development of a cross-domain RA increases
due to the larger number of requirements and constraints that may be specified by the
complex systems domains. Building the features model may require a tool in order to
manage the analysis and structuring the abstract features in domains. The cross domain
RA contains core services of the domains included in the abstract features package. The
appropriate architectural style is provided by a knowledge base through service taxon-
omy. A domain architecture repository is a solution for variability management of spe-
cific services. A decision support tool is proposed for product derivation. The role of
this tool is to bound variabilities in order to get a service configuration for a product
architecture. In our example we developed a tabular form for the decision model. When
the complexity increases a more elaborated tool is required and is a subject of our future
research. The analysis strategy based on scenarios has been used to verify architecture
against anticipated changes in domain knowledge. From the commonality viewpoint
analysis results should consider if scenarios affect core services of the RA. If these core
services are affected they should be domain specific.

Future research work is needed to develop systematic ways of bridging require-
ments taxonomy of each domain to a cross domain RA. However this paper presented
the main concepts and justified why these concepts are required. When several do-
mains adopt a service oriented approach it is possible to develop products which ad-
dress functions from across two or more domains and consume services from multiple
domains. Seeking engagement of communities of practice across domains is a more
challenging but worthwhile goal. It remains to be seen how relevant international
bodies foster such engagement. An essential prerequisite, however, is to have in place
a coherent core services for all specific domain that can be used as a point of refer-
ence in establishing cross domain exchanges.

Acknowledgements. We wish to thank the anonymous referees for their valuable
suggestions and comments. This work has been partially supported by the Romanian
scientific research grant CNCSIS IDEI no. 627/2009.

www.manaraa.com

318 L. Dobrica and E. Ovaska

References

1. Kopetz, H.: The ARTEMIS Cross-Domain Architecture for Embedded Systems (2007)
2. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis

Feasibility Study, SEI Technical Report CMU/SEI- 90-TR-21 (1990)
3. Niemelä, E., Evesti, A., Savolainen, P.: Modeling Quality Attribute Variability. In: Procs.

of the 3rd Int. Conf. ENASE, pp. 169–176. INSTICC Press (2008)
4. Dobrica, L., Niemelä, E.: A survey on software architecture analysis methods. IEEE Trans.

on Soft. Eng. Journal 28(7), 638–653 (2002)
5. Dobrica, L., Niemelä, E.: Modeling Variability in the Software Product Line Architecture

of Distributed Services. In: Procs of SERP 2007, pp. 269–275 (2007)
6. Szypersky, C.: Component Software Beyond Object-Oriented Programming. Addison-

Wesley, Reading (1999)
7. TINA, Service Architecture Specification (1997), http://www.tinac.com
8. Dobrica, L., Niemelä, E.: Adaptive middleware services. In: Procs. IASTED Applied

Informatics, Int. Symp. on Soft. Eng., Databases and Applications, pp. 137–142. ACTA
Press (2002)

9. Costa, E., Blair, G., Coulson, G.: Experiments with reflexive middleware. In: Procs.
ECOOP 1998 Workshop Reflexive Object Oriented Programming and Systems (1998)

10. IEEE Recommended Practice for Architectural descriptions of Software Intensive Sys-
tems, Std 1417-2000, (2000)

11. Niemelä, E., Kalaoja, J., Lago, P.: Towards an architectural knowledge base for wireless
service engineering. IEEE Trans. on Soft. Eng. 31(5), 361–379 (2005)

12. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley,
Reading (1998)

13. Buschmann, F., Meunier, R., Rohnert, H.: Pattern-Oriented Software Architecture:A Sys-
tem of Patterns. John Wiley and Sons, Chichester (1996)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1994)

15. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering. Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

16. Selic, B.: Recursive control. In: Martin, R., et al. (eds.) Patterns Languages of Program
Design, vol. 3, pp. 147–162. Addison-Wesley, Reading (1998)

www.manaraa.com

Author Index

Abreu, Rui 60
Amin, Tayyeb 31
Anda, Bente 147
Arcelli, Francesca 163
Arisholm, Erik 147
Assmann, Martin 291
Atkinson, Colin 206

Baldassarre, Maria Teresa 234
Benestad, Hans Christian 147
Bollin, Andreas 248
Bonetti, Alessio 47
Bostan, Philipp 206
Boydens, Jeroen 75
Brasil, Márcia 220
Burrows, Rachel 277

Caivano, Danilo 234
Cicchetti, Antonio 262
Cortés, Mariela 220

Dieng, Idrissa A. 93
Dobrica, Liliana 305
Donins, Uldis 180
Dornstauder, Sebastian 120
Dulz, Winfried 17

Engels, Gregor 291
Estublier, Jacky 93

Garcia, Alessandro 277
Gemund, Arjan J.C. van 60
Giorgini, Paolo 47
Gnaho, Christophe 193
González, Alberto 60
Grollius, Tobias 31

Kaiya, Haruhiko 3

Labey, Sven De 75
Laleau, Régine 193

Massen, Thomas von der 291

Ortner, Erich 31
Osis, Janis 180
Ovaska, Eila 305

Pelliccione, Patrizio 262
Perin, Fabrizio 163
Piattini, Mario 234
Pierantonio, Alfonso 262
Pino, Francisco J. 234
Pohl, Daniela 248

Raibulet, Claudia 163
Ravani, Stefano 163
Ruscio, Davide Di 262

Saeki, Motoshi 3
Santos, Viviane 220
Semmak, Farida 193
Shekh, Slava 107
Siena, Alberto 47
Simon, Eric 93
Steegmans, Eric 75
Stoll, Dietmar 206
Szőke, Ákos 133

Täıani, François 277
Tyerman, Sue 107

Visaggio, Giuseppe 234
Volz, Bernhard 120

Wübbeke, Andreas 291

Zacchiroli, Stefano 262
Zoeteweij, Peter 60

	Title Page
	Preface
	Organization
	Table of Contents
	Part I: Evaluation of Novel Approaches to Software Engineering 2008
	Measuring Characteristics of Models and Model Transformations Using Ontology and Graph Rewriting Techniques
	Introduction
	Meta Modeling and Defining Metrics
	Using Domain Ontologies
	Metrics of Model Transformation
	Graph Rewriting System
	Attaching Calculation Rules

	Conclusion and Future Work
	References

	On-the-Fly Testing by Using an Executable TTCN-3 Markov Chain Usage Model
	Introduction
	Testing Concepts
	TTCN-3
	Statistical Usage Testing

	Model-Based Testing
	The TestUS Framework
	Scenario-Based Requirements
	Deriving the MCUM Test Model

	Test Suite Generation
	Arguments for Avoiding the Explicit Generation of Test Cases
	The Executable Markov Chain Usage Model Is the Test Suite

	A DECT Case Study
	Conclusions and Ongoing Work
	References

	Language-Critical Development of Process-Centric Application Systems
	Introduction
	Application Systems Architecture in the 21st Century
	Process-Centric Development of Application Systems
	Interdisciplinary Language-Critical Specification of IT-Use
	Organization Modeling
	Method-Neutral Knowledge Reconstruction
	Generally Object-Oriented System Design

	Concretion in the Large
	Dynamic Support and Optimization of Work Processes
	Outlook
	References

	Balancing Business Perspectives in Requirements Analysis
	Introduction
	An IS for Logistics
	Background
	Tropos and Goal Analysis
	Balanced Scorecards

	Balanced Goalcards
	Strategy Modelling
	Validation of the Strategic Map

	Evaluation
	Conclusions
	References

	Using Fault Screeners for Software Error Detection
	Introduction
	Fault Screeners
	Experiments
	Experimental Setup
	Results

	Analytic Model
	Concepts and Definitions
	Ideal Screening
	Bitmask Screening
	Range Screening
	Discussion

	Fault Screening and SFL
	Related Work
	Conclusions and Future Work
	References

	Language Support for Service Interactions in Service-Oriented Architecture
	Introduction
	Evaluation of Client-Service Interactions in OSGi
	Explicit Client-Service Interactions
	Implicit Client-Service Interactions

	Abstractions for Explicit Service Interactions
	Support for Basic Service Interactions
	Support for Constrained Service Interactions

	Abstractions for Implicit Service Interactions
	Language-Integrated Atomic Event Notification
	Language-Integrated Composite Event Notification

	Implementation
	Related Work
	Conclusions
	References

	Part II: Evaluation of Novel Approaches to Software Engineering 2009
	Automating Component Selection and Building Flexible Composites for Service-Based Applications
	Introduction
	The SAM / CADSE Approach
	The Approach
	SAM Core
	An Example

	Composite
	Static Composite Definition
	Automatic Composite Building
	Composite Contextual Characteristics

	SAM Composite System: Tools, Environment and Runtime
	Composite Designing Environment
	Composite Runtime

	Related Work
	Conclusions and Future Work
	References

	An Aspect-Oriented Framework for Event Capture and Usability Evaluation
	Introduction
	Related Work
	Event Tracing
	Event Capture
	Usability Evaluation

	Framework
	Aspect Interface
	Framework Frontend
	Event Capture Module

	Output Module
	Case Study
	The Case
	Usability Experiment
	Investigation Experiment

	Experimental Results
	Usability Experiment
	Investigation Experiment

	Future Work
	Conclusions
	References

	Implementing Domain Specific Process Modelling
	Introduction
	Foundations
	Layered Meta Modelling
	Extended Powertypes
	Logical and Linguistic Modelling

	Content of the Logical Meta Model Stack
	Abstract Process Meta Meta Model (APM2M)
	Abstract Process Meta Model (APMM)
	Domain Specific Meta Models (DSMMs)
	Modelling Processes on Level M1
	Stepwise Design of a Process Model

	Dealing with Change
	Change I: New Feature for an Existing Construct (Tagging)
	Change II: Introducing New Constructs
	Change III: Enhancing / Changing the Modelling Method

	Language for Linguistic Meta Modelling
	Related Work
	Conclusions
	References

	Bin-Packing-Based Planning of Agile Releases
	Introduction
	Agile Release Planning
	Requirements Specification

	Optimized Release Planning
	ConceptualModel of Agile Release Planning
	A Prototype for Collaborative Agile Release Planning Data Collection
	Mapping to Bin-Packing
	Formulating BPR-RCPSP Model
	Solving the BPR-RCPS Problem

	Experimentation
	Context and Methodology
	Data Collection and Results
	Analysis

	Discussion and Related Work
	Conclusions
	References

	A Method to Measure Productivity Trends during Software Evolution
	Introduction
	Current Approaches to Measuring Productivity
	Design of the Study
	Context for Data Collection
	Data on Real Change Tasks
	Data on Benchmark Tasks
	Design of Productivity Indicators
	Accounting for Changes in Quality

	Results and Validation
	Validation of ICPR$_1$
	Validation of ICPR$_2$
	Validation of ICPR$_3$
	Validation of ICPR$_4$

	Discussion
	Conclusions
	References

	Design Pattern Detection in Java Systems: A Dynamic Analysis Based Approach
	Introduction
	A Rule Based Approach for Design Pattern Detection
	Detection Rules for Design Patterns
	Detection Rules for the Chain of Responsibility Design Pattern
	Detection Rules for the Observer Design Pattern
	Detection Rules for the Visitor Design Pattern

	A Java Design Pattern Detector
	Experimental Results with JADEPT
	Concluding Remarks
	References

	Formalization of the UML Class Diagrams
	Introduction
	Formalization of the Class Diagram
	Case Study of the Construction of the Topological Class Diagram
	The Construction of the Topological Functioning Model
	Construction of the Topological Class Diagram

	Conclusions and Future Work
	References

	Extended KAOS Method to Model Variability in Requirements
	Introduction
	Overview of the Research Project
	Domain Context
	Our Approach

	Product Models
	Variant Model
	Generic Model

	Specific Model Building Process
	Related Works
	Conclusions
	References

	Orthographic Software Modeling: A Practical Approach to View-Based Development
	Introduction
	View-Based Software Engineering Method
	KobrA
	KobrA Dimensions

	Dynamic View Management
	SUM and View Metamodels
	“On-the-fly” View Generation

	Dimension-Based View Navigation
	Dimensions
	Language and Notation
	Tailoring
	OSM Configuration for Specific Software Development Methods

	Case Study
	Mobile Tourist Guide – Black Box
	Mobile Tourist Guide – White Box

	Conclusions
	References

	Dynamic Management of the Organizational Knowledge Using Case-Based Reasoning
	Introduction
	Case-Based Reasoning
	Process Reuse Approach
	Representation of Organizational Assets in the Repository
	Retrieval Process
	Adaptation Process
	Learning
	Retention

	Case Study
	Final Considerations
	References

	Mapping Software Acquisition Practices from ISO 12207 and CMMI
	Introduction
	Related Work
	Performing the Mapping
	Analyzing the Models
	Designing and Carrying Out the Mapping

	Presenting and Analyzing the Results of the Mapping
	The Acquisition in Both Models
	Detailed View for Acquisition
	Lessons Learned

	Conclusions
	References

	Concept Management: Identification and Storage of Concepts in the Focus of Formal Z Specifications
	Introduction
	Related Work
	Maintenance Support
	RE of Formal Z Specifications
	Multi-dimensional Problem

	Formal Specification Concepts
	Conceptual Elements
	Specification Concepts

	Concept Location Framework
	Database
	Agents
	Queries for Concept Location

	Evaluation
	Setting and Correctness
	Performance Considerations

	Conclusions
	References

	A Model Driven Approach to Upgrade Package-Based Software Systems
	Introduction
	Packages, Upgrades and Failures
	Proposed Approach
	Modeling System and Packages
	Modeling Maintainer Scripts
	Configuration Metamodel
	Package Metamodel
	Log Metamodel

	Related Works
	Conclusions and Future Works
	References

	Coupling Metrics for Aspect-Oriented Programming: A Systematic Review of Maintainability Studies
	Introduction
	AOP and Coupling Measurement
	AOP Languages and Constructs
	Existing AO Coupling Metrics

	Systematic Review
	Objectives and Questions
	Review Strategy

	Results
	Assessed Maintainability Attributes
	Coupling Metrics Used to Measure Maintainability
	Measured AOP Mechanisms
	Validation of Coupling Metrics

	Discussion
	Threats to Validity
	Analysis and Implications

	Conclusions
	References

	Revealing Commonalities Concerning Maintenance of Software Product Line Platform Components
	Introduction
	Software Product Lines
	Service-Oriented Computing and Software as a Service

	Exploiting Potentials in the Whole SPL Lifecycle
	Characteristics of the Combined Approach
	Advantageous Characteristics
	Disadvantageous Characteristics

	The Address Validation Service
	Characteristics of Suitable Software Components
	High Level Characteristics
	Architectural Level Characteristics

	Related Work
	Conclusions and Future Work
	References

	Service Based Development of a Cross Domain Reference Architecture
	Introduction
	Background
	Software and Service Architecture
	The Software Product Line Development
	Quality Evaluation Techniques at the Architectural Level. Scenarios

	Our Approach
	Architecture Design
	Architecture Analysis

	Example
	Example Description
	Example Architectural Design
	Example Architecture Analysis

	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

